Update camera to implement defocused blur.

Removed tracer programs that no longer compile with new Camera API.
This commit is contained in:
Bill Thiede 2018-09-10 21:43:39 -07:00
parent 5ba579a374
commit f2c5cf48ad
5 changed files with 120 additions and 292 deletions

View File

@ -29,20 +29,93 @@ fn color(r: Ray, world: &Hit, depth: usize) -> Vec3 {
Vec3::new(1., 1., 1.) * (1. - t) + Vec3::new(0.5, 0.7, 1.) * t
}
fn random_scene() -> Vec<Box<Hit>> {
let mut rng = rand::thread_rng();
let mut objects: Vec<Box<Hit>> = vec![Box::new(Sphere::new(
Vec3::new(0., -1000., 0.),
1000.,
Box::new(Lambertian::new(Vec3::new(0.5, 0.5, 0.5))),
))];
let mut random = || rng.gen_range::<f32>(0., 1.);
for a in -11..11 {
for b in -11..11 {
let choose_mat = random();
let center = Vec3::new(a as f32 + 0.9 * random(), 0.2, b as f32 + 0.9 * random());
if (center - Vec3::new(4., 0.2, 0.)).length() > 0.9 {
let sphere = if choose_mat < 0.8 {
// diffuse
Box::new(Sphere::new(
center,
0.2,
Box::new(Lambertian::new(Vec3::new(
random() * random(),
random() * random(),
random() * random(),
))),
))
} else if choose_mat < 0.95 {
// metal
Box::new(Sphere::new(
center,
0.2,
Box::new(Metal::new(
Vec3::new(
0.5 * (1. + random()),
0.5 * (1. + random()),
0.5 * (1. + random()),
),
0.5 * random(),
)),
))
} else {
// glass
Box::new(Sphere::new(center, 0.2, Box::new(Dielectric::new(1.5))))
};
objects.push(sphere);
};
}
}
let more: Vec<Box<Hit>> = vec![
Box::new(Sphere::new(
Vec3::new(0., 1., 0.),
1.0,
Box::new(Dielectric::new(1.5)),
)),
Box::new(Sphere::new(
Vec3::new(-4., 1., 0.),
1.0,
Box::new(Lambertian::new(Vec3::new(0.4, 0.2, 0.1))),
)),
Box::new(Sphere::new(
Vec3::new(4., 1., 0.),
1.0,
Box::new(Metal::new(Vec3::new(0.7, 0.6, 0.5), 0.0)),
)),
];
objects.extend(more);
objects
}
fn main() -> Result<(), std::io::Error> {
let mut rng = rand::thread_rng();
let nx = 200;
let ny = 100;
let ns = 100;
println!("P3\n{} {}\n255", nx, ny);
let cam = Camera::new_lookfrom_vfov(
Vec3::new(-2., 2., 1.),
Vec3::new(0., 0., -1.),
let lookfrom = Vec3::new(3., 3., 2.);
let lookat = Vec3::new(0., 0., -1.);
let dist_to_focus = (lookfrom - lookat).length();
let aperture = 2.;
let cam = Camera::new(
lookfrom,
lookat,
Vec3::new(0., 1., 0.),
45.,
20.,
nx as f32 / ny as f32,
aperture,
dist_to_focus,
);
// TODO(wathiede): Box this instead of using references.
let world = HitableList::new(vec![
Box::new(Sphere::new(
Vec3::new(0., 0., -1.),
@ -70,6 +143,8 @@ fn main() -> Result<(), std::io::Error> {
Box::new(Dielectric::new(1.5)),
)),
]);
//let world = HitableList::new(random_scene());
println!("P3\n{} {}\n255", nx, ny);
for j in (0..ny).rev() {
for i in 0..nx {
let mut col: Vec3 = Default::default();

View File

@ -1,86 +0,0 @@
extern crate rand;
extern crate rtiow;
use rand::Rng;
use rtiow::camera::Camera;
use rtiow::hitable::Hit;
use rtiow::hitable_list::HitableList;
use rtiow::material::Dielectric;
use rtiow::material::Lambertian;
use rtiow::material::Metal;
use rtiow::ray::Ray;
use rtiow::sphere::Sphere;
use rtiow::vec3::Vec3;
fn color(r: Ray, world: &Hit, depth: usize) -> Vec3 {
if let Some(rec) = world.hit(r, 0.001, std::f32::MAX) {
let scatter_response = rec.material.scatter(&r, &rec);
if depth < 50 && scatter_response.reflected {
return scatter_response.attenutation
* color(scatter_response.scattered, world, depth + 1);
}
return Default::default();
}
// No hit, choose color from background.
let unit_direction = r.direction().unit_vector();
let t = 0.5 * (unit_direction.y + 1.);
Vec3::new(1., 1., 1.) * (1. - t) + Vec3::new(0.5, 0.7, 1.) * t
}
fn main() -> Result<(), std::io::Error> {
let mut rng = rand::thread_rng();
let nx = 200;
let ny = 100;
let ns = 100;
println!("P3\n{} {}\n255", nx, ny);
let world = HitableList::new(vec![
Box::new(Sphere::new(
Vec3::new(0., 0., -1.),
0.5,
Box::new(Lambertian::new(Vec3::new(0.1, 0.2, 0.5))),
)),
Box::new(Sphere::new(
Vec3::new(0., -100.5, -1.),
100.,
Box::new(Lambertian::new(Vec3::new(0.8, 0.8, 0.))),
)),
Box::new(Sphere::new(
Vec3::new(1., 0., -1.),
0.5,
Box::new(Metal::new(Vec3::new(0.8, 0.6, 0.2), 0.2)),
)),
Box::new(Sphere::new(
Vec3::new(-1., 0., -1.),
0.5,
Box::new(Dielectric::new(1.5)),
)),
Box::new(Sphere::new(
Vec3::new(-1., 0., -1.),
-0.45,
Box::new(Dielectric::new(1.5)),
)),
]);
let cam = Camera::new2x1();
for j in (0..ny).rev() {
for i in 0..nx {
let mut col: Vec3 = Default::default();
for _ in 0..ns {
let u = (rng.gen_range::<f32>(0., 1.) + i as f32) / nx as f32;
let v = (rng.gen_range::<f32>(0., 1.) + j as f32) / ny as f32;
let r = cam.get_ray(u, v);
col = col + color(r, &world, 0);
}
col = col / ns as f32;
// Gamma correct, use gamma 2 correction, which is 1/gamma where gamma=2 which is 1/2
// or sqrt.
col = Vec3::new(col[0].sqrt(), col[1].sqrt(), col[2].sqrt());
let ir = (255.99 * col[0]) as u32;
let ig = (255.99 * col[1]) as u32;
let ib = (255.99 * col[2]) as u32;
println!("{} {} {}", ir, ig, ib);
}
}
Ok(())
}

View File

@ -1,80 +0,0 @@
extern crate rand;
extern crate rtiow;
use rand::Rng;
use rtiow::camera::Camera;
use rtiow::hitable::Hit;
use rtiow::hitable_list::HitableList;
use rtiow::material::Lambertian;
use rtiow::material::Metal;
use rtiow::ray::Ray;
use rtiow::sphere::Sphere;
use rtiow::vec3::Vec3;
fn color(r: Ray, world: &Hit, depth: usize) -> Vec3 {
if let Some(rec) = world.hit(r, 0.001, std::f32::MAX) {
let scatter_response = rec.material.scatter(&r, &rec);
if depth < 50 && scatter_response.reflected {
return scatter_response.attenutation
* color(scatter_response.scattered, world, depth + 1);
}
return Default::default();
}
// No hit, choose color from background.
let unit_direction = r.direction().unit_vector();
let t = 0.5 * (unit_direction.y + 1.);
Vec3::new(1., 1., 1.) * (1. - t) + Vec3::new(0.5, 0.7, 1.) * t
}
fn main() -> Result<(), std::io::Error> {
let mut rng = rand::thread_rng();
let nx = 200;
let ny = 100;
let ns = 100;
println!("P3\n{} {}\n255", nx, ny);
let world = HitableList::new(vec![
Box::new(Sphere::new(
Vec3::new(0., 0., -1.),
0.5,
Box::new(Lambertian::new(Vec3::new(0.8, 0.3, 0.3))),
)),
Box::new(Sphere::new(
Vec3::new(0., -100.5, -1.),
100.,
Box::new(Lambertian::new(Vec3::new(0.8, 0.8, 0.))),
)),
Box::new(Sphere::new(
Vec3::new(1., 0., -1.),
0.5,
Box::new(Metal::new(Vec3::new(0.8, 0.6, 0.2), 0.2)),
)),
Box::new(Sphere::new(
Vec3::new(-1., 0., -1.),
0.5,
Box::new(Metal::new(Vec3::new(0.8, 0.8, 0.8), 0.8)),
)),
]);
let cam = Camera::new2x1();
for j in (0..ny).rev() {
for i in 0..nx {
let mut col: Vec3 = Default::default();
for _ in 0..ns {
let u = (rng.gen_range::<f32>(0., 1.) + i as f32) / nx as f32;
let v = (rng.gen_range::<f32>(0., 1.) + j as f32) / ny as f32;
let r = cam.get_ray(u, v);
col = col + color(r, &world, 0);
}
col = col / ns as f32;
// Gamma correct, use gamma 2 correction, which is 1/gamma where gamma=2 which is 1/2
// or sqrt.
col = Vec3::new(col[0].sqrt(), col[1].sqrt(), col[2].sqrt());
let ir = (255.99 * col[0]) as u32;
let ig = (255.99 * col[1]) as u32;
let ib = (255.99 * col[2]) as u32;
println!("{} {} {}", ir, ig, ib);
}
}
Ok(())
}

View File

@ -1,92 +0,0 @@
extern crate rand;
extern crate rtiow;
use rand::Rng;
use rtiow::camera::Camera;
use rtiow::hitable::Hit;
use rtiow::hitable_list::HitableList;
use rtiow::material::Dielectric;
use rtiow::material::Lambertian;
use rtiow::material::Metal;
use rtiow::ray::Ray;
use rtiow::sphere::Sphere;
use rtiow::vec3::Vec3;
fn color(r: Ray, world: &Hit, depth: usize) -> Vec3 {
if let Some(rec) = world.hit(r, 0.001, std::f32::MAX) {
let scatter_response = rec.material.scatter(&r, &rec);
if depth < 50 && scatter_response.reflected {
return scatter_response.attenutation
* color(scatter_response.scattered, world, depth + 1);
}
return Default::default();
}
// No hit, choose color from background.
let unit_direction = r.direction().unit_vector();
let t = 0.5 * (unit_direction.y + 1.);
Vec3::new(1., 1., 1.) * (1. - t) + Vec3::new(0.5, 0.7, 1.) * t
}
fn main() -> Result<(), std::io::Error> {
let mut rng = rand::thread_rng();
let nx = 200;
let ny = 100;
let ns = 100;
println!("P3\n{} {}\n255", nx, ny);
let world = HitableList::new(vec![
Box::new(Sphere::new(
Vec3::new(0., 0., -1.),
0.5,
Box::new(Lambertian::new(Vec3::new(0.1, 0.2, 0.5))),
)),
Box::new(Sphere::new(
Vec3::new(0., -100.5, -1.),
100.,
Box::new(Lambertian::new(Vec3::new(0.8, 0.8, 0.))),
)),
Box::new(Sphere::new(
Vec3::new(1., 0., -1.),
0.5,
Box::new(Metal::new(Vec3::new(0.8, 0.6, 0.2), 0.2)),
)),
Box::new(Sphere::new(
Vec3::new(-1., 0., -1.),
0.5,
Box::new(Dielectric::new(1.5)),
)),
Box::new(Sphere::new(
Vec3::new(-1., 0., -1.),
-0.45,
Box::new(Dielectric::new(1.5)),
)),
]);
let cam = Camera::new_lookfrom_vfov(
Vec3::new(-2., 2., 1.),
Vec3::new(0., 0., -1.),
Vec3::new(0., 1., 0.),
90.,
nx as f32 / ny as f32,
);
for j in (0..ny).rev() {
for i in 0..nx {
let mut col: Vec3 = Default::default();
for _ in 0..ns {
let u = (rng.gen_range::<f32>(0., 1.) + i as f32) / nx as f32;
let v = (rng.gen_range::<f32>(0., 1.) + j as f32) / ny as f32;
let r = cam.get_ray(u, v);
col = col + color(r, &world, 0);
}
col = col / ns as f32;
// Gamma correct, use gamma 2 correction, which is 1/gamma where gamma=2 which is 1/2
// or sqrt.
col = Vec3::new(col[0].sqrt(), col[1].sqrt(), col[2].sqrt());
let ir = (255.99 * col[0]) as u32;
let ig = (255.99 * col[1]) as u32;
let ib = (255.99 * col[2]) as u32;
println!("{} {} {}", ir, ig, ib);
}
}
Ok(())
}

View File

@ -1,33 +1,48 @@
extern crate rand;
use std::f32::consts::PI;
use self::rand::Rng;
use ray::Ray;
use vec3::cross;
use vec3::Vec3;
fn random_in_unit_disk() -> Vec3 {
let mut rng = rand::thread_rng();
let v = Vec3::new(1., 1., 0.);
loop {
let p = 2. * Vec3::new(
rng.gen_range::<f32>(0., 1.),
rng.gen_range::<f32>(0., 1.),
0.,
) - v;
if p.squared_length() < 1. {
return p;
}
}
}
pub struct Camera {
origin: Vec3,
lower_left_corner: Vec3,
horizontal: Vec3,
vertical: Vec3,
u: Vec3,
v: Vec3,
w: Vec3,
lens_radius: f32,
}
impl Camera {
pub fn new2x1() -> Camera {
Camera {
lower_left_corner: Vec3::new(-2., -1., -1.),
horizontal: Vec3::new(4., 0., 0.),
vertical: Vec3::new(0., 2., 0.),
origin: Default::default(),
}
}
// vfov is top to bottom in degrees
pub fn new_lookfrom_vfov(
pub fn new(
lookfrom: Vec3,
lookat: Vec3,
vup: Vec3,
vfov: f32,
aspect: f32,
aperture: f32,
focus_dist: f32,
) -> Camera {
let theta = vfov * PI / 180.;
let half_height = (theta / 2.).tan();
@ -37,30 +52,26 @@ impl Camera {
let u = cross(vup, w).unit_vector();
let v = cross(w, u);
Camera {
lower_left_corner: origin - half_width * u - half_height * v - w,
horizontal: 2. * half_width * u,
vertical: 2. * half_height * v,
lower_left_corner: origin
- half_width * focus_dist * u
- half_height * focus_dist * v
- focus_dist * w,
horizontal: 2. * half_width * focus_dist * u,
vertical: 2. * half_height * focus_dist * v,
origin,
}
}
// vfov is top to bottom in degrees
pub fn new_vfov(vfov: f32, aspect: f32) -> Camera {
let theta = vfov * PI / 180.;
let half_height = (theta / 2.).tan();
let half_width = aspect * half_height;
Camera {
lower_left_corner: Vec3::new(-half_width, -half_height, -1.),
horizontal: Vec3::new(2. * half_width, 0., 0.),
vertical: Vec3::new(0., 2. * half_height, 0.),
origin: Default::default(),
w: (lookfrom - lookat).unit_vector(),
u: cross(vup, w).unit_vector(),
v: cross(w, u),
lens_radius: aperture / 2.,
}
}
pub fn get_ray(&self, u: f32, v: f32) -> Ray {
let rd = self.lens_radius * random_in_unit_disk();
let offset = self.u * rd.x + self.v * rd.y;
Ray::new(
self.origin,
self.lower_left_corner + self.horizontal * u + self.vertical * v - self.origin,
self.origin + offset,
self.lower_left_corner + self.horizontal * u + self.vertical * v - self.origin - offset,
)
}
}