Implement Lambertian and Metal materials.

Fixed bug with Vec3::unit_vector().
Had to remove old example programs because Sphere::new() API changed to
allow materials.
This commit is contained in:
Bill Thiede 2018-09-09 17:01:52 -07:00
parent 73ca5c8454
commit 7c213e3a2b
9 changed files with 156 additions and 154 deletions

View File

@ -6,30 +6,20 @@ use rand::Rng;
use rtiow::camera::Camera;
use rtiow::hitable::Hit;
use rtiow::hitable_list::HitableList;
use rtiow::material::Lambertian;
use rtiow::material::Metal;
use rtiow::ray::Ray;
use rtiow::sphere::Sphere;
use rtiow::vec3::Vec3;
fn random_in_unit_sphere() -> Vec3 {
let mut rng = rand::thread_rng();
let v = Vec3::new(1., 1., 1.);
loop {
let p = 2. * Vec3::new(
rng.gen_range::<f32>(0., 1.),
rng.gen_range::<f32>(0., 1.),
rng.gen_range::<f32>(0., 1.),
) - v;
if p.squared_length() < 1. {
return p;
}
}
}
fn color(r: Ray, world: &Hit) -> Vec3 {
fn color(r: Ray, world: &Hit, depth: usize) -> Vec3 {
if let Some(rec) = world.hit(r, 0.001, std::f32::MAX) {
let target = rec.p + rec.normal + random_in_unit_sphere();
// 50% grey material
return 0.5 * color(Ray::new(rec.p, target - rec.p), world);
let scatter_response = rec.material.scatter(&r, &rec);
if depth < 50 && scatter_response.reflected {
return scatter_response.attenutation
* color(scatter_response.scattered, world, depth + 1);
}
return Default::default();
}
// No hit, choose color from background.
@ -45,8 +35,26 @@ fn main() -> Result<(), std::io::Error> {
let ns = 100;
println!("P3\n{} {}\n255", nx, ny);
let objects = vec![
Sphere::new(Vec3::new(0., 0., -1.), 0.5),
Sphere::new(Vec3::new(0., -100.5, -1.), 100.),
Sphere::new(
Vec3::new(0., 0., -1.),
0.5,
Box::new(Lambertian::new(Vec3::new(0.8, 0.3, 0.3))),
),
Sphere::new(
Vec3::new(0., -100.5, -1.),
100.,
Box::new(Lambertian::new(Vec3::new(0.8, 0.8, 0.))),
),
Sphere::new(
Vec3::new(1., 0., -1.),
0.5,
Box::new(Metal::new(Vec3::new(0.8, 0.6, 0.2), 0.2)),
),
Sphere::new(
Vec3::new(-1., 0., -1.),
0.5,
Box::new(Metal::new(Vec3::new(0.8, 0.8, 0.8), 0.8)),
),
];
let cam = Camera::new2x1();
let world = HitableList::new(objects.iter().map(|o| o).collect());
@ -57,7 +65,7 @@ fn main() -> Result<(), std::io::Error> {
let u = (rng.gen_range::<f32>(0., 1.) + i as f32) / nx as f32;
let v = (rng.gen_range::<f32>(0., 1.) + j as f32) / ny as f32;
let r = cam.get_ray(u, v);
col = col + color(r, &world);
col = col + color(r, &world, 0);
}
col = col / ns as f32;
// Gamma correct, use gamma 2 correction, which is 1/gamma where gamma=2 which is 1/2

View File

@ -1,53 +0,0 @@
extern crate rand;
extern crate rtiow;
use rand::Rng;
use rtiow::camera::Camera;
use rtiow::hitable::Hit;
use rtiow::hitable_list::HitableList;
use rtiow::ray::Ray;
use rtiow::sphere::Sphere;
use rtiow::vec3::Vec3;
fn color(r: Ray, world: &Hit) -> Vec3 {
if let Some(rec) = world.hit(r, 0., std::f32::MAX) {
return (rec.normal + 1.) * 0.5;
}
// No hit, choose color from background.
let unit_direction = r.direction().unit_vector();
let t = 0.5 * (unit_direction.y + 1.);
Vec3::new(1., 1., 1.) * (1. - t) + Vec3::new(0.5, 0.7, 1.) * t
}
fn main() -> Result<(), std::io::Error> {
let mut rng = rand::thread_rng();
let nx = 200;
let ny = 100;
let ns = 100;
println!("P3\n{} {}\n255", nx, ny);
let objects = vec![
Sphere::new(Vec3::new(0., 0., -1.), 0.5),
Sphere::new(Vec3::new(0., -100.5, -1.), 100.),
];
let cam = Camera::new2x1();
let world = HitableList::new(objects.iter().map(|o| o).collect());
for j in (0..ny).rev() {
for i in 0..nx {
let mut col: Vec3 = Default::default();
for _ in 0..ns {
let u = (rng.gen_range::<f32>(0., 1.) + i as f32) / nx as f32;
let v = (rng.gen_range::<f32>(0., 1.) + j as f32) / ny as f32;
let r = cam.get_ray(u, v);
col = col + color(r, &world);
}
col = col / ns as f32;
let ir = (255.99 * col[0]) as u32;
let ig = (255.99 * col[1]) as u32;
let ib = (255.99 * col[2]) as u32;
println!("{} {} {}", ir, ig, ib);
}
}
Ok(())
}

View File

@ -6,30 +6,20 @@ use rand::Rng;
use rtiow::camera::Camera;
use rtiow::hitable::Hit;
use rtiow::hitable_list::HitableList;
use rtiow::material::Lambertian;
use rtiow::material::Metal;
use rtiow::ray::Ray;
use rtiow::sphere::Sphere;
use rtiow::vec3::Vec3;
fn random_in_unit_sphere() -> Vec3 {
let mut rng = rand::thread_rng();
let v = Vec3::new(1., 1., 1.);
loop {
let p = 2. * Vec3::new(
rng.gen_range::<f32>(0., 1.),
rng.gen_range::<f32>(0., 1.),
rng.gen_range::<f32>(0., 1.),
) - v;
if p.squared_length() < 1. {
return p;
}
}
}
fn color(r: Ray, world: &Hit) -> Vec3 {
fn color(r: Ray, world: &Hit, depth: usize) -> Vec3 {
if let Some(rec) = world.hit(r, 0.001, std::f32::MAX) {
let target = rec.p + rec.normal + random_in_unit_sphere();
// 50% grey material
return 0.5 * color(Ray::new(rec.p, target - rec.p), world);
let scatter_response = rec.material.scatter(&r, &rec);
if depth < 50 && scatter_response.reflected {
return scatter_response.attenutation
* color(scatter_response.scattered, world, depth + 1);
}
return Default::default();
}
// No hit, choose color from background.
@ -45,8 +35,26 @@ fn main() -> Result<(), std::io::Error> {
let ns = 100;
println!("P3\n{} {}\n255", nx, ny);
let objects = vec![
Sphere::new(Vec3::new(0., 0., -1.), 0.5),
Sphere::new(Vec3::new(0., -100.5, -1.), 100.),
Sphere::new(
Vec3::new(0., 0., -1.),
0.5,
Box::new(Lambertian::new(Vec3::new(0.8, 0.3, 0.3))),
),
Sphere::new(
Vec3::new(0., -100.5, -1.),
100.,
Box::new(Lambertian::new(Vec3::new(0.8, 0.8, 0.))),
),
Sphere::new(
Vec3::new(1., 0., -1.),
0.5,
Box::new(Metal::new(Vec3::new(0.8, 0.6, 0.2), 0.2)),
),
Sphere::new(
Vec3::new(-1., 0., -1.),
0.5,
Box::new(Metal::new(Vec3::new(0.8, 0.8, 0.8), 0.8)),
),
];
let cam = Camera::new2x1();
let world = HitableList::new(objects.iter().map(|o| o).collect());
@ -57,7 +65,7 @@ fn main() -> Result<(), std::io::Error> {
let u = (rng.gen_range::<f32>(0., 1.) + i as f32) / nx as f32;
let v = (rng.gen_range::<f32>(0., 1.) + j as f32) / ny as f32;
let r = cam.get_ray(u, v);
col = col + color(r, &world);
col = col + color(r, &world, 0);
}
col = col / ns as f32;
// Gamma correct, use gamma 2 correction, which is 1/gamma where gamma=2 which is 1/2

View File

@ -1,46 +0,0 @@
extern crate rtiow;
use rtiow::hitable::Hit;
use rtiow::hitable_list::HitableList;
use rtiow::ray::Ray;
use rtiow::sphere::Sphere;
use rtiow::vec3::Vec3;
fn color(r: Ray, world: &Hit) -> Vec3 {
if let Some(rec) = world.hit(r, 0., std::f32::MAX) {
return (rec.normal + 1.) * 0.5;
}
// No hit, choose color from background.
let unit_direction = r.direction().unit_vector();
let t = 0.5 * (unit_direction.y + 1.);
Vec3::new(1., 1., 1.) * (1. - t) + Vec3::new(0.5, 0.7, 1.) * t
}
fn main() -> Result<(), std::io::Error> {
let nx = 200;
let ny = 100;
println!("P3\n{} {}\n255", nx, ny);
let lower_left_corner = Vec3::new(-2., -1., -1.);
let horizontal = Vec3::new(4., 0., 0.);
let vertical = Vec3::new(0., 2., 0.);
let origin: Vec3 = Default::default();
let objects = vec![
Sphere::new(Vec3::new(0., 0., -1.), 0.5),
Sphere::new(Vec3::new(0., -100.5, -1.), 100.),
];
let world = HitableList::new(objects.iter().map(|o| o).collect());
for j in (0..ny).rev() {
for i in 0..nx {
let u = i as f32 / nx as f32;
let v = j as f32 / ny as f32;
let r = Ray::new(origin, lower_left_corner + horizontal * u + vertical * v);
let col = color(r, &world);
let ir = (255.99 * col[0]) as u32;
let ig = (255.99 * col[1]) as u32;
let ib = (255.99 * col[2]) as u32;
println!("{} {} {}", ir, ig, ib);
}
}
Ok(())
}

View File

@ -1,11 +1,12 @@
use material::Material;
use ray::Ray;
use vec3::Vec3;
#[derive(Copy, Clone)]
pub struct HitRecord {
pub struct HitRecord<'m> {
pub t: f32,
pub p: Vec3,
pub normal: Vec3,
pub material: &'m Material,
}
pub trait Hit {

View File

@ -1,6 +1,7 @@
pub mod camera;
pub mod hitable;
pub mod hitable_list;
pub mod material;
pub mod ray;
pub mod sphere;
pub mod vec3;

81
rtiow/src/material.rs Normal file
View File

@ -0,0 +1,81 @@
extern crate rand;
use self::rand::Rng;
use hitable::HitRecord;
use ray::Ray;
use vec3::dot;
use vec3::Vec3;
fn random_in_unit_sphere() -> Vec3 {
let mut rng = rand::thread_rng();
let v = Vec3::new(1., 1., 1.);
loop {
let p = 2. * Vec3::new(
rng.gen_range::<f32>(0., 1.),
rng.gen_range::<f32>(0., 1.),
rng.gen_range::<f32>(0., 1.),
) - v;
if p.squared_length() < 1. {
return p;
}
}
}
pub struct ScatterResponse {
pub scattered: Ray,
pub attenutation: Vec3,
pub reflected: bool,
}
pub trait Material {
fn scatter(&self, r_in: &Ray, rec: &HitRecord) -> ScatterResponse;
}
pub struct Lambertian {
albedo: Vec3,
}
impl Lambertian {
pub fn new(albedo: Vec3) -> Lambertian {
Lambertian { albedo }
}
}
impl Material for Lambertian {
fn scatter(&self, _r_in: &Ray, rec: &HitRecord) -> ScatterResponse {
let target = rec.p + rec.normal + random_in_unit_sphere();
ScatterResponse {
attenutation: self.albedo,
scattered: Ray::new(rec.p, target - rec.p),
reflected: true,
}
}
}
pub struct Metal {
albedo: Vec3,
fuzzy: f32,
}
fn reflect(v: Vec3, n: Vec3) -> Vec3 {
v - 2. * dot(v, n) * n
}
impl Metal {
pub fn new(albedo: Vec3, fuzzy: f32) -> Metal {
let fuzzy = fuzzy.min(1.);
Metal { albedo, fuzzy }
}
}
impl Material for Metal {
fn scatter(&self, r_in: &Ray, rec: &HitRecord) -> ScatterResponse {
let reflected = reflect(r_in.direction().unit_vector(), rec.normal);
let scattered = Ray::new(rec.p, reflected + self.fuzzy * random_in_unit_sphere());
ScatterResponse {
scattered,
attenutation: self.albedo,
reflected: dot(scattered.direction(), rec.normal) > 0.,
}
}
}

View File

@ -1,18 +1,23 @@
use hitable::Hit;
use hitable::HitRecord;
use material::Material;
use ray::Ray;
use vec3::dot;
use vec3::Vec3;
#[derive(Copy, Clone, Default)]
pub struct Sphere {
center: Vec3,
radius: f32,
material: Box<Material>,
}
impl Sphere {
pub fn new(center: Vec3, radius: f32) -> Sphere {
Sphere { center, radius }
pub fn new(center: Vec3, radius: f32, material: Box<Material>) -> Sphere {
Sphere {
center,
radius,
material,
}
}
}
@ -31,6 +36,7 @@ impl Hit for Sphere {
t: temp,
p,
normal: (p - self.center) / self.radius,
material: &*self.material,
});
}
let temp = (-b + (b * b - a * c).sqrt()) / a;
@ -40,6 +46,7 @@ impl Hit for Sphere {
t: temp,
p,
normal: (p - self.center) / self.radius,
material: &*self.material,
});
}
}

View File

@ -40,12 +40,7 @@ impl Vec3 {
}
pub fn unit_vector(self) -> Vec3 {
let k = 1. / self.length();
Vec3 {
x: self.x / k,
y: self.y / k,
z: self.z / k,
}
self / self.length()
}
pub fn make_unit_vector(&mut self) {