Compare commits

..

55 Commits

Author SHA1 Message Date
4dc6fb41f3 Day 19 part 1 solution. Disable broken day 18. 2020-12-19 11:54:18 -08:00
7ee762858c Day 18 part 1, STILL BROKEN. 2020-12-18 22:40:22 -08:00
3775e36fad Day 18 part 1 BROKEN 2020-12-18 17:01:39 -08:00
069788b2ee Day 17 part 2 solution 2020-12-18 11:52:12 -08:00
6d4cdcefe0 Day 17 part 1 solution. 2020-12-18 10:53:41 -08:00
de31fdf400 Day 15, comment out slow test. 2020-12-18 09:35:20 -08:00
4045d014f4 Updating README.md 2020-12-16 20:02:45 -08:00
fdace1fa25 Day 16 part 1 & 2 solutions. 2020-12-16 20:02:07 -08:00
bbfa622270 Updating README.md 2020-12-15 17:29:06 -08:00
05dc0c0ecc Day 15, remove debugging output 2020-12-15 17:28:38 -08:00
49319f1e21 Updating README.md 2020-12-15 17:28:21 -08:00
c6ec085ba9 Day 15 part 2 solution 2020-12-15 17:27:58 -08:00
7e7154bc7d Day 15 part 1 solution 2020-12-15 16:32:42 -08:00
c260afd7c6 Updating README.md 2020-12-15 08:03:14 -08:00
5299f9f66e Updating README.md 2020-12-15 07:55:29 -08:00
77cae3d106 Day 14 remove test assert. 2020-12-15 06:43:42 -08:00
93f918bee8 Day 13 part 2 solution 2020-12-14 20:06:30 -08:00
a383f91683 Day 14 part 2 solution. 2020-12-14 19:51:27 -08:00
d0146e18d4 Day 14 part 1 solution 2020-12-14 18:08:15 -08:00
78063d8bf6 Day 13 part 2 almost working? 2020-12-14 17:30:49 -08:00
29778566a4 Day 13 part 1 solution 2020-12-13 10:06:30 -08:00
f7ab64cc96 Day 12 part 2 solution 2020-12-12 15:08:47 -08:00
c4cc8a1c42 Day 12 part 1 solution 2020-12-12 12:48:08 -08:00
1a7666783d Day 11 part 2 solution 2020-12-12 11:57:25 -08:00
63850f082b Day 11 part 1 solution 2020-12-12 08:56:33 -08:00
58d479b9a6 Day 10 remove failed Graph experiment. 2020-12-11 19:37:31 -08:00
c0d2cb38a8 Day 10 part 2 solution. 2020-12-11 19:35:27 -08:00
b41163030a Day 10 part 1 solution 2020-12-10 17:15:40 -08:00
1af8eab8c2 Add (much slower) sort and binary search day 9 part 1 2020-12-09 18:04:50 -08:00
68d161f2f7 Address some TODOs. 2020-12-09 17:56:42 -08:00
5dc51a050f Remove unused use statement 2020-12-09 17:43:57 -08:00
3185eef130 Updating README.md 2020-12-09 17:43:32 -08:00
32d13861d9 Day 9 part 2 solution 2020-12-09 17:41:11 -08:00
99c79f84fe Day 9 part 1 solution 2020-12-09 16:41:40 -08:00
d3ded19a61 Updating README.md 2020-12-08 18:54:54 -08:00
868901c566 Updating README.md 2020-12-08 18:54:19 -08:00
f02033811d Day 8 part 2 solution 2020-12-08 18:52:33 -08:00
69f84f4819 Day 8 part 1 solution 2020-12-08 18:29:32 -08:00
26be0fb699 Updating README.md 2020-12-07 19:49:54 -08:00
991d1efc65 Updating README.md 2020-12-07 19:49:42 -08:00
498e8ea206 Day 7 part 1 solution. 2020-12-07 19:38:51 -08:00
7c01756821 Day 7 part 1 solution. 2020-12-07 19:05:17 -08:00
8e076c1134 Enable cargo run and use this to run all solutions. 2020-12-06 17:11:28 -08:00
4172592120 Implement faster day 6 part 2 2020-12-06 11:27:12 -08:00
99001d75b5 Ran 2020/scripts/update-readme.sh 2020-12-06 10:35:47 -08:00
ab1a4d6a4a Script for updating README.md 2020-12-06 10:35:32 -08:00
89e6dfe8be Day 6 part 2. 2020-12-06 10:27:07 -08:00
60a4950f24 Day 6 part 1 solution. 2020-12-06 09:49:37 -08:00
59f67f1c64 Day 5 part 1 glenng, recognize binary pattern. 2020-12-05 10:36:47 -08:00
89d59a6546 Day 5 part 2 and a mythical glenng implementation for part 1. 2020-12-05 09:07:02 -08:00
354a64fd23 Day 4 try using FromStr instead of From<&str>. 2020-12-05 08:43:30 -08:00
3e6d4e18e9 Day 5 part 1 solution. 2020-12-05 08:43:13 -08:00
38979959e6 Update w/ day 4 output. 2020-12-04 18:04:27 -08:00
c6194437c3 Day 4 part 2. 2020-12-04 17:51:04 -08:00
0ff14b83d3 Day 1 part 1 solution. 2020-12-04 17:10:46 -08:00
36 changed files with 13953 additions and 84 deletions

View File

@@ -1,49 +1,155 @@
# Results
## Day 1
```
AOC 2020
Day 1 - Part 1 - binary : 1006875
generator: 12.539µs,
runner: 373ns
Advent of code 2020
Day 1 - Part 1 - binary: 1006875
generator: 21.838µs,
runner: 1.773µs
Day 1 - Part 1 - linear : 1006875
generator: 4.945µs,
runner: 7.727µs
Day 1 - Part 1 - linear: 1006875
generator: 5.339µs,
runner: 8.329µs
Day 1 - Part 1 - set : 1006875
generator: 16.721µs,
runner: 1.288µs
Day 1 - Part 1 - set: 1006875
generator: 18.303µs,
runner: 1.392µs
Day 1 - Part 2: 165026160
generator: 4.735µs,
runner: 1.465477ms
Day 2 - Part 1: 640
generator: 1.713032ms,
runner: 123.609µs
Day 2 - Part 1 - handrolled: 640
generator: 173.912µs,
runner: 109.58µs
Day 2 - Part 2: 472
generator: 1.475144ms,
runner: 10.985µs
Day 3 - Part 1: 148
generator: 38.406µs,
runner: 2.797µs
Day 3 - Part 2: 727923200
generator: 37.063µs,
runner: 12.181µs
Day 4 - Part 1: 239
generator: 372.532µs,
runner: 1.922µs
Day 4 - Part 2: 188
generator: 363.202µs,
runner: 43.784µs
Day 5 - Part 1 - glenng: 989
generator: 171ns,
runner: 81.501µs
Day 5 - Part 1 - wathiede: 989
generator: 85.614µs,
runner: 459ns
Day 5 - Part 2 - wathiede: 548
generator: 86.417µs,
runner: 29.328µs
Day 6 - Part 1: 6930
generator: 118ns,
runner: 630.141µs
Day 6 - Part 2: 3585
generator: 127ns,
runner: 2.007135ms
Day 6 - Part 2 - faster: 3585
generator: 129ns,
runner: 1.095441ms
Day 7 - Part 1: 222
generator: 1.109401ms,
runner: 202.592µs
Day 7 - Part 2: 13264
generator: 1.092186ms,
runner: 5.447µs
Day 8 - Part 1: 1744
generator: 143ns,
runner: 47.289µs
Day 8 - Part 2: 1174
generator: 111ns,
runner: 150.1µs
Day 9 - Part 1: 1309761972
generator: 27.284µs,
runner: 37.991µs
Day 9 - Part 1 - sorted: 1309761972
generator: 26.598µs,
runner: 230.765µs
Day 9 - Part 2: 177989832
generator: 28.558µs,
runner: 124.417µs
Day 10 - Part 1: 1625
generator: 6.835µs,
runner: 421ns
Day 10 - Part 2: 3100448333024
generator: 4.802µs,
runner: 1.176µs
Day 11 - Part 1: 2338
generator: 75.55µs,
runner: 11.383128ms
Day 11 - Part 2: 2134
generator: 58.641µs,
runner: 49.994105ms
Day 12 - Part 1: 1838
generator: 38.302µs,
runner: 8.936µs
Day 12 - Part 2: 89936
generator: 33.951µs,
runner: 8.316µs
Day 13 - Part 1: 153
generator: 2.04µs,
runner: 205ns
Day 13 - Part 2: 471793476184394
generator: 2.258µs,
runner: 3.68µs
Day 14 - Part 1: 10717676595607
generator: 93ns,
runner: 89.201µs
Day 14 - Part 2: 3974538275659
generator: 92ns,
runner: 5.803116ms
Day 15 - Part 1: 929
generator: 177ns,
runner: 253.908µs
Day 15 - Part 2: 16671510
generator: 114ns,
runner: 2.423626128s
Day 16 - Part 1: 23115
generator: 246.028µs,
runner: 24.917µs
Day 16 - Part 2: 239727793813
generator: 246.67µs,
runner: 429.366µs
Day 1 - Part 2 : 165026160
generator: 4.272µs,
runner: 1.225545ms
```
## Day 2
```
AOC 2020
Day 2 - Part 1 : 640
generator: 1.732103ms,
runner: 100.802µs
Day 2 - Part 1 - handrolled : 640
generator: 157.527µs,
runner: 97.775µs
Day 2 - Part 2 : 472
generator: 1.374162ms,
runner: 10.461µs
```
## Day 3
```
AOC 2020
Day 3 - Part 1 : 148
generator: 40.059µs,
runner: 1.345µs
Day 3 - Part 2 : 727923200
generator: 95.265µs,
runner: 6.908µs
```

89
2020/input/2020/day10.txt Normal file
View File

@@ -0,0 +1,89 @@
67
118
90
41
105
24
137
129
124
15
59
91
94
60
108
63
112
48
62
125
68
126
131
4
1
44
77
115
75
89
7
3
82
28
97
130
104
54
40
80
76
19
136
31
98
110
133
84
2
51
18
70
12
120
47
66
27
39
109
61
34
121
38
96
30
83
69
13
81
37
119
55
20
87
95
29
88
111
45
46
14
11
8
74
101
73
56
132
23

93
2020/input/2020/day11.txt Normal file
View File

@@ -0,0 +1,93 @@
LLLL.LLLLL.LLLLLLLLLLLLLLLL.L.LLLLLL.LLLL..L.LLLLLLLL.LLLLLL.LLLL..LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLLLLLLLLLLL.LLL.LLLLLLLLL.L..LLLLLLLL.LLLLLL.LLLLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLLLLL
LLLLLLLLLL.LLLLLLLLLLL.LLLL.LLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLL.LLLLL.LL.LLLL.LL.LLLLLLLLLLLLLLLLLLLL
LLL.LLLLLLLLLLL.LLLL.LLLLLLLLLL.LL.L.LLLLLLL.LLLLLLLL.LLLLLL.LLLLL.LLLLLLL.LLLLLLLL.LLLLL.LLLLLLLL
LLLLLLLLLL.LLLLLLLLLLLLLLLL.LLLL.LLL.LLLL.LLLLLLLLLLL.LLLLLLLLLLLL.LLLLLLL.LLLLLLLL.LLLLLLLLLLLLLL
LLLLLLLLLL.LLLLLLLLL.LLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLL.LLLLLLLLL.LLLLLLLLLLLL.LLLLLLLLLLLLLL
...L..LL.LL.LLL....L......L..L.....L.....L....L.LL.....LL..L.L...LL.L...LL..L.L...L.LL...L..LL..L.
LLLLLLLLLLLLLLLLLL.L.LLLLLL.LLLLLLLL.LLLLL.L.LLLLLLLLLLLLLLL.LLLLL.LLLLLLLLLL.LLLLL.LLLLLLLL.LLLLL
LLLLLLLLL.LLLLLLLLLL.LLLLLLLLLLLLLLL.LLLLLLL.LLLLLLLLLLLLLLL.LLLLL.LLLLLLL.LLLLLLLL.LLLLLLLLLLLLL.
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLL.LLLLLLLLLLLL.LLLLLLL.LLLLLLLL.LLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLLLLLLLLLLL.L.LLLL.L.LLLLL.L.LLLLLLLL.LLLLLLLLLLLL.LLLLLLL.LLLLLLLL.LLLLL.LLLLLLLL
LLLLLLL..L.LLLLLLLL..LLL.LL.LLLLLL.L.LLLLLLL.LLLLLLLL.LLLLLL.LLLLL.LL.LLLL.LLLLLLLL.LLLL.LLLLLLLLL
...L..L.L.L......L....L.L..L...L.L..L.L...LL.LL....L...L........L.L.LLL....L..L..L...L.L..L..LL...
LLLLLLLLLL.LLLLLLLLLLLLLLLL.L.LLLLLL.LLLLLLL.LLLLLLLLLLLLLLL.LLLLL.LLLLLLLLLLLL.L.LLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLLLL.LLLL.L.LLLLLLLLLLLLLLL..LLLLLLLL.LLLLLL.LLLLL.LLLLLLLLLLLLLLLL.LLLLLLLLLLLLLL
LLL.LLL.LL.LLLLLLLLL.LLLLL..LLLLLLLL.LLLLLLLLLLLLLLL..LLLLLLLLLLLL.LLLLLLL.LLLLLLLL.LLL.LLLLLLLLLL
.LLLLLLLLL.LL.LLLLLL.LLL.LLLLLLLLLLLLLLLLLLL.LLLLLLLLLLLLLLL.LLLLL.LLLLLLL.LLLLLLLL.LL.LLLLLLLLLLL
LLLLL.LLLLLLLLLLLLLL.LLLLLL.LLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLL.LLLLL.LLLLLLL.LLLLLLLLLLLLLLLLLLLLLLL
.LLLLLLLLLLLLLLLLLLL.L.LLLL.LLLLLLLL.LLLLLLLLLLLLLLLLLLL..LL.LLLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLL
L....LL.....L......LLL......L.LLL..L....L.L....L....LL.L.LL.LL........LL....L.L.L..LLLL.......L...
LLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLLLL.LLLLL.LLL.LLL.LLLLLLLL.LLLLLLLLLLLLLL
.LL..LL.LL.LLLLLLLLL.LL.LLLLLLLLLLLL.LLLLLLL.LLLLL.LLLLLLLLL.LLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLLLLLL
LLL.LLLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLL.LLLLL.LL.LLLLLL.LLLLL.LLLLLLL.L.LL.LLLLLLLLLLLLLLLLLL
LLLLLLLLLL..LLLLLLLL.LLLL.L.LLL.LLLLLLLLLLLL.LLLLLLLL.LLLLLL.LLLL..LLLLLLLLLL..LLLL.LLLLLLLLLLLLLL
LLL.LLLLLL.LLLLLLLLL.LLLLLL.LLLLLLL..LLLLLLL..LLLLLLL.LLLLLL.LLLLL.LLLLLLL.LLLLLLLLLLLLLLLLLLLLLLL
.LLLLLLLLLLLLLLLLLLL.LLLLLL.LL.LLLLL.LLLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLLLL.LL.LLL.LLLLLLLL.LLLLLLL.LLLLLLLL..LLL.L.LLLLL.LLLLLLL.LLLLLL...LLLLLLLLLLLLLL
LLL.LLLLLL.LLLLLLLLLLLLLLLL.LLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLL.LLLLL.LLLLLLL.LLLLLLLL.LLLLLLLLL.LLLL
LLLL.LLLLL...LLLLLLLLLLL.LL.LLLLLLLL.LLLLLLL.LLLLLLLLLLLLLL..LLLLL.LLLLLLL..LLLLLLL.LLLLLLLLLLLLLL
..L...LLL........LL....L.....L.....L..L..L.....L.L.LL...L......LLLLL.L.L...........L.LL.....LL...L
LLLLLLLLLLLLLLLLLLLL.LLLLLL.LLLLLLLLLLLLLLLL.LLLLLLLL.LLLLLLLLLLLL.LLLLLLL.LLLLLLLL.LLLLLLLLLLLLLL
LLLLLLLLLL.L.LLL.LLL.LLLLLL.LLLLLLLL.LLLLL.LLLLLLLLLL.LLLLLLLLLLLL.LLLLLLLLLLLLLLLL.LLLLLLL.LLLLLL
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLL.LLLLLLLL.LLLLLL.LLLLL.LLLLLLL.LLLLLLLL.LLLLLLLLLL.LLL
LLLLLLLLLLLLLLLL.LLLLLLLLLL.LLLLLLLLLLLLL.LL.LL.LLLLLLLLLLLL.LLLLL.LLLLLLLLLLLL.LL.LLL.LLLLLLLLLLL
LLLLLLLLLL.LLLLLLLLLLLLLLLL.LLLLLLL...LLLLLLLLLLLLLLL.LLLLLL.LLLLL.LLLLLLL.LLLLLLLL.LLLLLLLLLLL.LL
LLLLLLL.LL.LLLLLLLLL.LLLLLLLLLLLLLLL.LLLLLLL..LLLLLLL.LLLLLL.LLLLL.LLLLLLL.LLLLLLLL.LLLLLLLLLLLLLL
....L..L.L.LL..LLL..L....LL...L.L..LL.L......L...LLL.L.L.L.....L.......L......LL.....L..L.L..LL...
LLLLLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLLL.LLLLLL.LLLLLLLLLLLLLLLLLLLLLL.LLLLLLL.LLLLLLL.LLLLLLLLLLLLL.L
LLLLLLLLLL.LLLLLLLLL.LLLL.L.LLL.LLLL.LLLLLLL.LLLLLLLLLLLLLLL.LLLLL.LLLLLLLLLLLLLLLL.LLLLLLLLLLLLLL
LLLLLLLLLLLLL.LLLLLL.LLLLLLLLLLLLLL...LLLLLL.LLLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLL.LLLLLLLLLLLLLL
LLLLLLLLLL.LLLLLLLLLLLL.LLLLLLLLL..LLLLLLLLLLLLLLLLLL.LLLLLLL.LLLL.LLLLLLL.LLLLLLLL.LLL.LLLLLLLLLL
LLLLLLLLLL.L.LLLLLLL.LLLLLLLLLLLLLLLLLLLLLLL.LLLL.LLL.LLLLLL.LLLLLLLLLLLLLLLLLLLLLL.LLL.LLLLLLLLLL
LL.LLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLLL.LLLLLLLL.LLLLLLL.LLL.LL.LLLLL.LLLLLLL.LLLLLLLL.LLLLLLLLLLLLLL
..LL.LLL...LLL.....L.L.L......L......L........L.LL......LLL..LL..L..L.LLL..LL..LL.L.....L.LL....L.
LLLLLLLLLL.LL.LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLLLLLL..LLLL.LLLLLLLL
LLLLLLLLLL.LLLLLLLLLLLLLLLL.LLLLLLLL.LLLLLLLLLLLLL.LL.LLLLLL.L.LLLLLLLLL.L.LLLLL.LL.L.LLLLLLLLLLLL
LLLLLLLLLL.LLLLLLLLL.LLLLLLLL.LLLLLL.LLLLLLLLLLLLLLLL.LLLLLL.LLLLL.LLLLLLL.LLLLLLLL.LLLLLLLLLLLLLL
LLLLLLLLL.LLLLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLL.LLLLLLLLLLLLL.LLLLLLL.LLLLLLL.LL.LLLLL.LLLLLLLLLLL.LL
LLLLLLLLLLLLLLLLLLLL.LLLLLLLL.LLLLLLLLLLLLLLLLLLL.LLLLLLLLLL.LLLLL.LLL.LLL.LLLLL.LL.LLLLLLLLLLLLLL
L..L..LL..LLL...L......L.....L...LL..L..L.....L.L...LL......L.L.LLL.L..L....L....L...L.L........LL
LLLLLLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLL.LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLL..LLLLLLLLLLLLLL
LLLLLL.LLL.LLLLLLLLL.LLLLLLLLLLLLLLL.L.LL.LLLLLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLLLL.LLLLL.LLLLLLLL
L.LLLLLLLL.LLLLLLLLLLLLLLLL.LLLLLLLL.LLLLLLLLLLLLLLLL.LLLL.L.LLLLL.LLLLLLLLLLLLLLLL.LLLLLLLLLLLLLL
LLLLLLLLLL.LLL.LL.LL.LLLLLLLLL.LL.LL.LLLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLL.LLLLL.LL.LLLLLLLLLLLLLL
LL.LLLLLLLLLLLLLL.LL.LLLLLLLLLLLLLL..LLLLLLLLLL.LLL.L..LLLLL.LLLLL..LLLLLL.LLLLLLLLLLLLLLLLLLLLLLL
LLLLLLLLLLLLLL.LLLLLLLLLLLL.LLLLLLLL.LLL.LLLLLLLLLLLL.LLLLLL.LLLLL.LLLLLLL..LLLLLLL.LLLLLLLLLLLLLL
LLLLLLLLLL.LLL.LLLLL.LL.LLLLLLLLLLLL.LLLLLLL.LLLLLLLL.LLLLLL.LLLLL.LLLLLLL.LLL.LL.L.LLLLLLL.LLL.L.
LLLLLLLLLLLLLLLLLLLL.LLLL.LLLLLLLLLL.LLL.LLL.LLLLLLLL.LLLLLL.LLLLLLLLLLLLLLLLL.L.LL.LLLLLLLLLL.LLL
..L....L....L....L........L...L....L..LL.L.L..L.LLLL.L.LLL...L...L..LL..L...L....L....L.......L.L.
LLLLLLLLLL..LLL.LLLLLLLLLLL.LLLLLLLL.LLL.LLL..LLLLLLL.LLLLLL.LLLLL.LLLLLLLLLLLLLLL..LL..LLLLLLLLLL
LLLLLLLLLL.LLLLLLLLL.LLLLLLLLLLLLLLL.LLLLLLL.LL.LLLLL.LLLLLL.LLLLLLLLLLLL..LLLLLLLLLLLLLLLLLLLLLLL
LLLLLLLLL.LLLLLLLLLLLLLLLLL..LLLLLLL.LLLLLLLLLLLLLLLL.LLLLLL.LLLLL.LLLLLLLLLLLLLLLL.LLLL.LLLLLLLLL
LLLLLLLLLL.LLLLLLLLL.LLLLLL..LLLLLLL..LLLLLL.LL.LLLLLLLLLLLL.LLLLL.LLLLLLL.LLLLLLLLLLLLLLLLLLLLL.L
L.LLLLLLLL.LLLLLLLLL.LL.LLL.LLLLLLLLLLLLLLL..LLLLLLLLLLLLLLL.LLLLL.LLLLLLL.LLLLLLLL.LLLLLLLLLLLLLL
LLLLLLLLLL..LLL.LLLLLLLLLLLLLLLLLLLL.LLLLLL.LLLLLLLLL.LLLLL..LLLLL.LLLLLLL.LLLLLLLLLLLLLLLLLLLLLLL
L.....L..LLL.....LL.L..L..LL....LLLLL.LL..L.......L...LL.....LL...L...........L.....L.L..L.....L.L
LLLLLLLLLL.LLL.LLLLL.LLLLLL.LLLLLLLL.LLLLLLL.LLLLLLLLL.LLLL..LLL.LLLLLLLLL.LLLLLLLLLLLLL.LLLLLLLLL
LLLLLLLLLL..LLLLL.LL.LLLLLL.LLLLLLLLLLLLLLLL.LLLLLLLL.LLLLLL.LLLLLLLLLLLLL.LLLLLLLL.LLLLLLLLLLLLLL
LLLLLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLLL.LLLLLLL.LLLLLLLL.LLLL.L.LLL.LLLLLLLLL.LLLLLLLL.LLLLLLLLLLLLLL
LLLLLLLLLL.LLLLLLLLLLLLLLLL.LLLLLLLL.LLLLLLL.LLLLLLLL.LLLLLL.LLLLL.LLLLLLL.LLLL.LL.LLLLLLLLLLLLLLL
LLLLL.LLLL.LLLLLLL.LLLLLLLL.LLLLLLLL.LLLLLLLLLLLLLLL.LLLLLLL.LLLL..LLLLLLL.LLLLLLLL.LLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLLLL..LLLLL.LLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLL.LLLLL.LLLLLL..LLLLLLLL.LLLLLLLLLLLLLL
........LLLLLL.LL.L..L...L...LLL....L.......LLLL..L.LL.L..L.L.LLL...L...L.......L..L.....L.L.L..LL
LLLLLLLLLL.LLLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLL.LL.LLL..LLLL.LLLLLLL.LLLLLLLLLLLLLLLLLLLLLLL
LLLLLLLLLL.LLLLLLLLL.LLLLLL.LLLLLLLLLLLLLLL..LLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLLLLLL.LLL.LLLLLLLLLL
L.LLLLL.LLLLLLLLLLLL.LLLLLL.LLLLLLLLLLL.LLLL.LLL.LLLLLLLLLLL.LLLLLLLLLLLLL.LLLLLLLL.LLLLL.LLLLLLLL
LLLLLL.LLL.LLLLLLLLLLLLL.LLLLLLLLLLL.LLLLLLL.LLLLLLLL.LLLLLLLLLLLL.LLL.L.L.LLLLLLLL.LLLLLLLLLLLLLL
LLL.LLLLLL.LLLLLLLLLLLLLLLL.LLLLLLLL.LLLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLLLLL.LLLLL.LLLLLLL.LLLLL.LL.LLLLLLLLLLLLLLLLLLLLL.LLLLLLL..LLLLLLL.LLLLLLLLLLLLLL
..LL..L....L.......L....L....LL...L.L..L.........LL..L..LL.L....LLL.L.LLL...L.....LL.....LL.LL....
LLLLLLLLLL.LLLLLL.LL.LLLLLLLL..LLLLL.LLLLLLLLLLLLLLLL.LLLLLL.L.LLLLLLLLLLL.LLLLLLLL.LLLLLLLLLL.LLL
L.LLLLLLLLLLLL.LLLLLLLLLLLL.LLLLLLLLLLLLLLLL.LLLLL.LL.LLLLLL.LLLLL.LLLLLLL.LLLLL.LLLLLLLLLL.LLLLLL
LLLLLLLLLL.LLLLLLLLL.LLL.LL.LLLLLLLL.L.LLLLLLLLLLLLLLLLLLLLL.L.LLL.LLLLLLL.LLLLLLLL.LLLLLLLLLLLLL.
LLLLLLLLLLLLLLLLLL.LLLLLLLL.LLLLLLLLLLLLLLLL.LLLLLLL.LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLLLL
LLLLL.LLLL.LLLLLLLLL.LLLLLL.LLLL.LLL..LLLLLL.LLLLLLLLLLLLLLL.LLLLL.LLLLLLLLLL.LLLLL.LLLLLLLLLLLLLL
LLLLLLLLLLLLLLLLLLLL.LLLLLL.LLLLLLLLLLLLLL.LLLLLLLLLL.LLLLLL.LLLLL.LLLLLLL.LLLLLLLL.LLLLLLLLL.LLLL
LLLLLLLLLLLLLLLLLLLLLLLLL.LLLLLLLLLL.L.LLLLLLLLLLLLLL.LLLLLL.LLLLL.LLLLLLLLLLLLLLLL.LL.LLLLLLLLLLL
.L.L....L........L....LL...L...L...L..L.............LL.LL..L.L.L...LL.......LLL.......LLL.L.L.L..L
LLLLLLLLLL.LLLLLLLLLLLLLLLL.LLLLL.LL.LLLLLLLLLLLLLL.L.LLLLL..LLLLL.LLLLLLL.LLLLLLLL.LLLL.LLLLLLLLL
LLLLLLLLLLLLLLLLLLLL.LLLLLLLLLLLLLLL.LLLLLLLLLLLLLLLLL.LLLLLLLLLLLLL.LLLLL.LLLLLLLL.LLLLLL.LLLLLLL
LLLLLLLLLL..LLLLLLLL.LLLLLL..LLLLLLL.LLLLLLLLLLLLLLLL.LLLLLL.LLLLL.LLLLLLL.LLLLLLLLL.LLLLLLLLLLLLL
LLLLLLLLLL.L.LLLLLLL.LLLLLLLLLLLLLL.LLLLLLLL.LLL.LLLL.LLLLLLLLL.LLLLLLLLLLLLLLLLLLL.LLLLL.LLLLLLLL
LLLLL.LLLLLLLLLLLLLL.LLLLLL.LLLLLLLL.LLLLLLLLLLLLLL.L.LLLLLL.LLLLL.LLLLLLL.LLLLLLLL.L.LLLLLLLLLLLL

786
2020/input/2020/day12.txt Normal file
View File

@@ -0,0 +1,786 @@
N3
F18
L180
F40
N3
R90
S5
R90
N4
F24
R90
E5
F36
R180
W3
W4
F63
N4
W1
N1
E1
L90
W1
N2
E2
S2
F39
W4
S3
F93
N1
F83
S1
R90
W3
R90
W4
L90
F53
S4
F4
L90
W3
F83
L180
W2
L90
W2
L90
W1
N3
F63
R90
N2
N3
E4
F10
S3
E4
R90
F11
L90
R90
S2
W2
F100
W5
R270
F40
S5
L90
E2
L90
E2
L180
N5
F81
N4
E4
L180
F38
W2
F22
W5
N5
E1
N2
W4
N2
F68
N1
F2
S1
F47
W5
F80
N3
E3
S2
L180
F87
L180
E4
L90
E2
S3
L180
E2
L90
W2
N4
F21
S4
W5
F70
F4
N2
F14
E2
S3
R90
W3
N2
E3
S1
F85
R90
E1
F80
L90
F100
R90
W1
R180
S4
F58
L90
N3
R90
E1
F42
E3
F93
S3
R90
W2
N3
L90
W3
W2
N2
W1
S4
R180
N5
R180
F52
N5
F20
L180
E5
R90
W2
S4
E1
S3
F75
R90
F49
L180
N3
F31
S3
E3
S5
L180
N3
E2
R270
W5
N3
W5
N3
L270
F54
R90
W5
F73
S3
W2
R90
N2
R90
S5
R90
W4
S2
L90
F3
S2
R90
F76
S3
F56
L90
F5
N1
R180
E3
N2
F20
E2
L180
F38
R180
W4
R90
S3
N5
E5
F26
S2
L180
E4
R90
F52
N3
L90
N5
E4
F63
L90
F48
W5
F29
N1
E3
L90
N5
L90
S3
F8
N2
R90
E4
S2
E2
F10
W2
L90
N2
R90
F2
E2
N4
R90
F74
W3
W5
S2
R90
N3
L90
E3
F58
N4
E5
S4
E3
F72
L180
E3
S2
L90
W4
S1
F14
W1
N1
E3
W4
L90
N1
F97
R90
N4
E3
F95
F95
L90
S4
F55
R90
W2
N1
R90
F16
L90
S5
F4
R90
F24
S4
E2
R90
W5
E1
L270
F12
L90
F100
W1
S5
W2
S3
F95
L90
F44
N5
F79
S4
R180
E2
S1
F40
R90
W2
R90
F67
S5
F15
L90
N4
L90
S5
E1
R90
N3
W5
N4
L270
F61
L90
E1
L90
E1
F38
E2
F19
W2
L90
S4
R180
W4
F59
N1
F26
N1
W5
F7
N4
F72
E2
R90
F59
N1
F58
N5
F13
N2
F2
S2
W1
F85
R270
S2
F17
R90
F96
S2
L90
E1
N4
F9
R270
F58
N1
L90
W2
S2
F73
W1
S2
F20
E2
S4
F94
L180
F27
S2
F48
N1
L270
S2
F77
E3
F10
W3
L270
S4
F53
F66
E5
S2
F33
S5
L90
W3
S3
E3
R90
E1
F62
S1
L90
S3
E3
N1
S1
E5
S2
F66
N4
N1
W4
F84
R180
F23
F20
E1
S3
R90
E2
F48
F89
L90
F97
R180
N3
F62
L90
N5
F28
W5
N4
L180
N4
W1
N3
L90
F95
N1
W5
R180
N5
F34
S1
W2
N4
F3
S2
E1
R90
E2
F36
S4
E5
F42
W1
L180
S1
F74
F38
N4
R270
N3
W2
S4
L180
F26
S4
F51
R90
F83
R90
F9
S2
W1
F99
S4
W1
F84
W1
R180
F59
W5
R90
F75
S1
F34
E4
N3
L90
F43
W5
N1
R90
F59
W1
N3
W4
S2
F36
N5
W4
E2
F96
R180
F44
R90
F12
E5
F24
W3
F39
S2
L180
W3
W4
F70
N4
E4
F36
E2
N1
F30
L90
S2
F81
R270
R90
F66
W1
L90
W2
F98
S1
E1
L90
E3
N2
F100
W3
N3
R90
F88
E4
L180
F52
L90
E4
F76
W2
L90
E3
F72
S3
L180
F12
F34
E5
F90
S5
W5
E1
N5
L180
E5
F84
E5
E3
L90
E3
F14
L90
W3
L90
S1
L90
W2
F54
R90
S2
F73
S4
E1
S1
F55
E5
N4
R180
L180
N4
R90
F91
L180
F5
E2
N1
W2
F27
W2
S5
R90
S3
F39
S3
W2
F59
F83
W3
E3
E4
L90
S1
R90
E4
F81
E4
R90
W5
F74
W3
E3
F30
L180
S2
E3
F33
S3
R90
F22
S5
F97
S1
E2
F50
E2
F19
E3
L90
L90
S5
W3
F80
F33
E1
R90
N3
L90
F70
L180
W4
N2
R180
S2
F38
S3
F7
R90
E1
N5
F86
W4
F49
W4
F51
S4
F47
R90
W3
R180
R180
W1
F98
S1
W3
S4
L90
F76
E1
F76
R180
S4
R180
W3
F26
N5
F35
S2
F94
F24
N2
F45
E1
L90
F32
S1
R180
F78
F84
L90
N2
F42
R90
F72
S1
E3
N2
W1
F23
E2
F69
L90
F29
R90
S5
W5
L90
W1
S2
E1
F96
S5
R180
F26
S5
W1
S3
F38
S1
E2
S5
W2
S5
F52
L90
F11
E3
R90
E4
F6
L90
R90
W1
R90
E3
F1
E4
N3
E5
R90
N2
R180
W2
N5
F46
N3
E5
F83
R90
F42
S3
R90
N5
F10

View File

@@ -0,0 +1,2 @@
1000390
13,x,x,41,x,x,x,x,x,x,x,x,x,997,x,x,x,x,x,x,x,23,x,x,x,x,x,x,x,x,x,x,19,x,x,x,x,x,x,x,x,x,29,x,619,x,x,x,x,x,37,x,x,x,x,x,x,x,x,x,x,17

577
2020/input/2020/day14.txt Normal file
View File

@@ -0,0 +1,577 @@
mask = 00101X10011X0X111110010X010011X10101
mem[41248] = 4595332
mem[26450] = 60
mem[32210] = 982366
mem[1060] = 234632920
mem[20694] = 38159
mem[45046] = 58906955
mask = 010110010X1101XX11X0100001X0000X00X1
mem[16069] = 7758
mem[55864] = 2473265
mem[37095] = 103513009
mem[4911] = 1002
mem[63231] = 6932274
mem[21265] = 72322159
mem[43724] = 16591353
mask = 01001X01X101011101010101011X1X000000
mem[63470] = 30339812
mem[16920] = 471738
mem[1014] = 29735753
mem[61061] = 6866
mem[8437] = 9138168
mem[46487] = 1819945
mem[2985] = 15040783
mask = 0X10X1101111001X1X100X1X00011100XX11
mem[32836] = 12902
mem[60365] = 24782
mem[29953] = 10085
mem[18214] = 1160
mask = 001011X10X11100000100X0X0X0X01011001
mem[39434] = 37383633
mem[278] = 670174555
mem[34062] = 20749996
mem[2583] = 6222093
mask = 01X111X1001101X11110100XX001X1000XX1
mem[6075] = 49890
mem[9363] = 2392780
mem[24967] = 218861
mask = X110111X1XX1010101111X01XX1000X001X1
mem[41334] = 11836
mem[24242] = 7263066
mem[17289] = 64986060
mem[2583] = 4702503
mem[21650] = 103905
mem[134] = 486675
mask = 00X010100110XXXX111000XXX1000011000X
mem[45307] = 37940
mem[16597] = 224911
mem[17943] = 392744
mem[55001] = 622484
mem[35954] = 470
mask = 11X01011X11000X1X1100X100X011101X011
mem[1005] = 56755
mem[16146] = 4333571
mem[32347] = 10486693
mem[11452] = 377363
mem[25158] = 328161913
mem[51956] = 250388
mem[10044] = 34078606
mask = 011011X1X111010111110000X001X1X00110
mem[8773] = 10575925
mem[33116] = 175
mem[36101] = 14593
mask = 0100010X110X0101010XX10X011111XX1101
mem[21083] = 1922
mem[3653] = 912
mem[26768] = 7321934
mem[49134] = 17616
mem[62950] = 41565481
mem[12957] = 2136786
mem[10324] = 17788
mask = X11X0X0X11010101110X01111010X1100X11
mem[5462] = 18755
mem[39408] = 2435211
mem[49271] = 6589
mask = X1X011XX01X100010110001X0X0X111X1100
mem[52570] = 2166
mem[28731] = 16573421
mem[18265] = 1192
mem[22435] = 10856992
mem[19263] = 7550
mem[30541] = 434738
mem[36101] = 869138
mask = 010001X001010001XX010100000010110X01
mem[52893] = 125505223
mem[22919] = 597
mem[62950] = 54107
mem[52797] = 7649588
mem[30421] = 3968
mem[30429] = 614720
mask = 01X0X10001X100010X1011XX00000X111X00
mem[44718] = 11141064
mem[42713] = 206218234
mem[51781] = 527553473
mem[1967] = 27527823
mem[6386] = 5404
mask = 00101X10XX11X0XX1110001000001110X11X
mem[62339] = 72046594
mem[14657] = 3243652
mem[750] = 40239
mem[134] = 1936539
mem[5775] = 266384125
mask = 011X111XXX110X01X11X000X00010100011X
mem[2956] = 438895
mem[41520] = 7282
mem[42192] = 34769
mem[8837] = 2587
mask = 01XX11100101000X0X10011XX01010011101
mem[12515] = 450388
mem[62175] = 649233
mem[54743] = 129273
mem[10284] = 159823
mem[31311] = 16983
mem[56137] = 852771967
mask = 11010X1X01010101X1010X11101111X00010
mem[47190] = 526627409
mem[34299] = 540572
mem[61226] = 61426238
mem[12892] = 61446
mem[33421] = 4192
mask = 0110111111X10101111010100XX01XX10100
mem[41685] = 258
mem[26983] = 60795579
mem[28064] = 10483
mem[33070] = 66557269
mem[12624] = 448724
mem[38125] = 141175913
mask = 010X1X00X101000X0111010101XX01011000
mem[12957] = 7693971
mem[45285] = 4628
mem[48546] = 799
mem[17857] = 7578026
mask = 00101X100101X0010110000000XX1010X110
mem[41841] = 234511
mem[27387] = 2990
mem[24636] = 1269957
mem[15638] = 428392
mem[22064] = 272
mask = 0XXX10X01011X011111000000XX0X100X010
mem[26764] = 482715793
mem[8422] = 70439
mem[17857] = 28381730
mem[4524] = 750659820
mask = 11101100010100X1011000111000XX00X010
mem[52570] = 517468200
mem[25263] = 11113122
mem[33421] = 32762600
mask = 11101X01XX1000010X10111000X1101X0X00
mem[16577] = 910
mem[32450] = 16924479
mem[4421] = 24801362
mem[46638] = 8546454
mask = 01X11X1101110101X1X1X010000XX101X001
mem[34209] = 24703796
mem[30481] = 831
mem[46487] = 147322
mem[38619] = 11686
mem[26615] = 1174
mask = 010X0X00110100X1XX000010110XX100X001
mem[53587] = 198046
mem[38420] = 22334
mem[20181] = 962
mask = XX101101X01000010XX01111001111010100
mem[33812] = 107321
mem[8613] = 7395
mem[1117] = 149990
mem[22919] = 23596
mask = 1X01110110010X01X100000001111011X010
mem[57800] = 254591077
mem[6633] = 60308580
mem[8980] = 104196938
mem[5936] = 289911936
mem[44806] = 297364592
mask = 11X10XX0X1010X01010110XXX01111100X00
mem[49271] = 177794
mem[15368] = 259266583
mem[19327] = 590
mem[40243] = 24245
mem[57130] = 1201404
mem[22545] = 1831196
mem[59161] = 25210381
mask = 0X101X11111X010111100X110XX11000X10X
mem[38749] = 2091454
mem[45138] = 621877
mem[52107] = 3430339
mask = 0010X110X11X00101X100011XX111X000100
mem[17228] = 252642
mem[23892] = 13721
mem[43787] = 2786942
mem[55481] = 58875
mem[513] = 892
mem[62445] = 40312
mask = 0010X11XXX11001011X01010X0111110X100
mem[17415] = 7415167
mem[9048] = 46059
mem[2159] = 636711036
mask = X010111X111X010X1110X10100XX1000X00X
mem[38420] = 104527
mem[24790] = 85
mem[58634] = 127952377
mem[8958] = 11672057
mask = X01X111X00X110XX0X10000000000X0X0100
mem[283] = 241
mem[8898] = 36719
mem[49134] = 217820
mem[31884] = 419937
mask = 0XX11110X1110X0101111000000100110X00
mem[27694] = 6848
mem[25843] = 331711
mem[6688] = 581239
mem[41591] = 171
mask = 0100X100X1010X01010X001XX01XX1010101
mem[30429] = 1103121
mem[42192] = 7844667
mem[21668] = 51727200
mask = 001X1X10001X101XX1100X1000101100X010
mem[4322] = 157863993
mem[49962] = 9140
mem[16964] = 1599
mem[14443] = 2038
mem[3767] = 16636129
mem[13476] = 485497191
mem[1663] = 163345
mask = X101110111010101X1X10011001X10110000
mem[13172] = 195
mem[33921] = 5684133
mem[1337] = 51317
mask = X1XXX101110101X1010X0100XX111X101001
mem[63928] = 4636
mem[56436] = 3887978
mem[6185] = 3037
mem[7095] = 11521156
mem[1663] = 121401
mem[7218] = 20750
mask = 010001001X0101010X00001XXX100XX10100
mem[24149] = 309519
mem[16287] = 12731276
mem[29772] = 65227
mem[37172] = 2824
mem[17508] = 59271
mem[22133] = 3806
mask = 01X0X101011X000X0X101000100011111101
mem[14401] = 158547520
mem[37172] = 16841
mem[40439] = 461272566
mem[60909] = 478018315
mem[43219] = 2154608
mem[25369] = 46117
mem[54852] = 79656
mask = XX10111001X100X1X1100X1X0001110001X1
mem[4213] = 900609324
mem[19327] = 28071
mem[30421] = 782
mem[4804] = 17293
mask = 0100X1000101X0010X010101X01000011001
mem[18139] = 1546181
mem[14021] = 33793814
mem[46699] = 2014
mem[51956] = 171606030
mem[29702] = 475302805
mem[18265] = 198549
mask = 0101X0110X1X0101X1X1X01101001X001XX1
mem[38962] = 132592128
mem[9436] = 7464578
mem[12650] = 49333
mem[8837] = 3234578
mask = 011X11101011X101111000XX001110001110
mem[61694] = 1206
mem[32263] = 20761769
mem[2116] = 193628
mem[13505] = 123039
mem[62164] = 14323289
mask = 1X101010100X0101X1110X01000101X00100
mem[21385] = 1022949
mem[51318] = 5667643
mem[17420] = 36980027
mem[29202] = 801
mask = 0101X01XX11X0101X10110X1010001001001
mem[15338] = 23103863
mem[10488] = 4521
mem[13172] = 17055515
mask = X10111X11X01X111X100000000111011X111
mem[36577] = 397263
mem[8992] = 11944917
mem[22064] = 738796
mem[17310] = 1562710
mem[30068] = 4950154
mask = 011111X10111X10X010X00X1X100X0010001
mem[31166] = 6551
mem[62218] = 1528
mem[11467] = 35999360
mem[39578] = 11530695
mem[30855] = 27864
mem[18369] = 1610323
mem[58953] = 12938251
mask = 01X111010X1111X0010X0XX010000X000111
mem[15411] = 1096
mem[49541] = 3181
mem[23568] = 276408
mem[45168] = 1721
mem[11394] = 155136
mask = 1111X1X011010001X101010X100XX11001X1
mem[61945] = 26647548
mem[63262] = 110741
mem[33783] = 158
mem[12753] = 200460
mem[43229] = 7579
mem[37084] = 26507
mask = 0100110011X10101010X00X01X11X1X10101
mem[65089] = 636807464
mem[5775] = 4440830
mem[52107] = 69328099
mem[38420] = 859060126
mem[21272] = 1700
mem[12062] = 176162
mem[12094] = 8733
mask = X100010111XX01X1X1010100X01101001X1X
mem[44718] = 33650499
mem[26507] = 165784650
mem[12622] = 2023
mem[5651] = 120398699
mask = 110001011X010X0111X10X00011110001X00
mem[44975] = 666498
mem[11614] = 751
mem[61354] = 5063
mem[4396] = 1131
mem[25418] = 882
mem[49245] = 64151
mask = 011X1X110111X1XX11X1100X01000X101001
mem[59013] = 1141214
mem[18016] = 95668408
mem[30067] = 18132964
mem[38900] = 286972459
mem[42265] = 13529062
mem[59369] = 6028326
mask = 0110110X010100010XXX0X00X0011X101X1X
mem[6479] = 8816055
mem[28451] = 29446
mem[61417] = 59156
mem[6694] = 15597
mem[29264] = 115437
mask = 11110100110101011101XX0001X1X1110101
mem[46886] = 114630
mem[17383] = 452299
mask = 010X110X11X10101000X001X011010000100
mem[19215] = 487176198
mem[59629] = 2120284
mem[27009] = 3064
mem[42335] = 22072
mem[514] = 2010
mask = 0100X1001101010X010000X0001000X00100
mem[37232] = 2564
mem[20561] = 29506163
mem[27396] = 380700410
mem[34075] = 868
mem[24967] = 1882926
mask = 010X1X01XX110111111X0XX0000X010X0101
mem[61084] = 3068852
mem[33028] = 188720342
mem[17375] = 62850
mask = X10X1X0X110101010X01001001101000X000
mem[24149] = 1815
mem[51489] = 197928369
mem[27694] = 231814
mem[11813] = 1002177793
mem[526] = 104755102
mem[22216] = 8396
mask = 0110111101010001X1X0X11100X010001111
mem[21083] = 2509191
mem[13215] = 172339241
mem[12386] = 106305632
mask = X1X101X11101010101000X010X11101101X1
mem[35709] = 64980388
mem[51838] = 62510
mem[48641] = 1174272
mem[42157] = 149
mask = 0X101100010100010X0X00X1100101111111
mem[35807] = 1100541
mem[10044] = 69616152
mem[3047] = 142725213
mask = 11101X1X10X101010111X001XX10X0X00100
mem[38049] = 110
mem[43097] = 14955394
mem[61810] = 3545867
mem[61238] = 5370
mem[20585] = 191903
mem[26133] = 24248
mask = 010X110X011X00010110010100X0XXX1X011
mem[15950] = 140910
mem[12062] = 424527462
mem[11876] = 236
mem[5182] = 4776
mem[50278] = 490
mask = 010XX011011101X1110101110111110110X0
mem[53736] = 2314
mem[12633] = 5053
mem[66] = 49557761
mask = 01X01101X10101010101000X00111110100X
mem[18849] = 911
mem[20666] = 12891678
mem[5609] = 10432
mem[59720] = 22145720
mem[17508] = 42631
mem[8585] = 3448
mask = 11X1X10X110101X101010X01X0011011X001
mem[30601] = 9140827
mem[30361] = 4166366
mem[46057] = 16057
mem[26983] = 251682577
mem[63197] = 1603252
mem[52893] = 462048575
mask = 011011100111X00X11100X00100010001XXX
mem[17534] = 25807901
mem[4932] = 106350673
mem[42192] = 735653575
mem[10874] = 59007
mask = 01000101110001X1XX001000001X1X011111
mem[48049] = 386
mem[1538] = 138451275
mem[50333] = 15707
mask = 0101100X01110111XX1X0000001011001X01
mem[18139] = 102960
mem[41277] = 5837
mem[44484] = 29937
mask = 11101XX10X1X0001011000100X010010X00X
mem[30615] = 95201946
mem[719] = 3697022
mem[27391] = 150969140
mem[62680] = 427952
mem[7349] = 46922
mem[17375] = 41348888
mem[57800] = 1901
mask = 0010X11X1X11X011111X0011001X01001111
mem[46994] = 118757653
mem[32947] = 23571
mem[8653] = 1364
mem[3767] = 6954112
mask = 01001X0011010X000111X0X0X1X011011XXX
mem[37908] = 88438829
mem[20630] = 618075182
mem[21520] = 101250753
mem[10703] = 475904
mask = 001001101XX10010111X1X10100111XX11X1
mem[17310] = 2889476
mem[2725] = 463419
mem[65001] = 910330085
mask = X1011011X111010101X110X1X1X0010110X0
mem[15999] = 18586203
mem[12825] = 51333145
mem[29966] = 596120517
mem[26866] = 141039
mem[24223] = 415414
mem[24403] = 16110598
mask = 0XX00X01111X01110X011010101X01101010
mem[43382] = 150995
mem[28011] = 1021785
mem[60339] = 7805893
mem[37197] = 268431
mem[17792] = 253366088
mem[21437] = 24057926
mask = XX1011X111100X00111X1100010111010011
mem[18006] = 265940517
mem[55921] = 1634
mem[27656] = 17058
mem[4911] = 3686
mem[33243] = 8125794
mem[47537] = 146165365
mask = 110111011X01X1X10100X000010110111X0X
mem[5775] = 176470
mem[63017] = 24003454
mask = 00011X001X11XX11111X01101010X0000010
mem[1604] = 174349
mem[42888] = 7159712
mem[26615] = 1487
mask = 01X11101100111111X000X1001110001011X
mem[5344] = 8563500
mem[21234] = 166162105
mem[48935] = 10849963
mask = 01000101XX0001111000XX0000X010010X00
mem[24149] = 127627213
mem[27338] = 43164114
mem[47215] = 252815
mem[47431] = 32732410
mask = 01011100000100011X0X0XX101X111111100
mem[13412] = 4193068
mem[45046] = 148
mem[63535] = 11659
mem[6518] = 471308933
mask = 111X111011X1X1X101111X000100001101X1
mem[31114] = 118512878
mem[41334] = 1604
mem[7338] = 571
mem[6001] = 4126415
mem[5215] = 4392
mem[47836] = 1862
mem[22064] = 30804845
mask = 0111010X11X1010X0101X1110011101X0111
mem[13321] = 22426593
mem[37095] = 5357
mem[44281] = 467020
mem[62680] = 2721559
mask = 010001X0010100XX10010000011000101X00
mem[30615] = 261491
mem[31097] = 46202501
mem[27880] = 6002395
mem[51385] = 2780
mem[51435] = 43181943
mem[42192] = 107728750
mask = 101011100X1100110X1X00X0101X10X11101
mem[48366] = 859523
mem[14111] = 859
mem[21668] = 292390073
mem[8073] = 858
mem[12920] = 662378
mask = X111X10011X10101X10101XX01111011X101
mem[20630] = 4051571
mem[55963] = 367
mem[379] = 10962356
mem[33028] = 37
mem[24035] = 9459
mem[50949] = 2030
mask = 001011100X110X111X10101100011X010X11
mem[8437] = 47226
mem[41248] = 319
mem[9624] = 3503
mem[6875] = 5282
mask = 11X111XX100101010100X01XX1X1001X1000
mem[21292] = 1673693
mem[51132] = 10346473
mem[7504] = 4325
mask = 111X010X1101011101X100010XX1X0111100
mem[35415] = 6296
mem[19215] = 1263591
mem[49977] = 379136185
mem[62950] = 28156510
mem[8265] = 28662942
mask = 01X110X01X1X0X11X1X00110000X01000100
mem[54672] = 131784041
mem[11394] = 24602
mem[24646] = 10584
mem[44349] = 4883
mem[54743] = 2940969
mem[8265] = 14841530
mask = 0X10111X11100X0011X011XX00X011011010
mem[49374] = 45910
mem[25923] = 368017518
mem[25114] = 8076340
mem[62690] = 904875563
mask = 010X11X0X1X1010X01010X01101001110101
mem[39408] = 3080
mem[6918] = 125955053
mem[27880] = 29186
mask = 01001101X101010X0101X1001111100010X1
mem[11813] = 153838914
mem[20585] = 1917
mem[21385] = 1881773
mem[8556] = 25758757
mem[22435] = 802061
mem[27631] = 13285866
mask = 01101110111X0001011X10100X0100X10101
mem[23441] = 186656612
mem[2186] = 189388742
mem[12866] = 874882
mem[12947] = 23895
mem[20630] = 77211
mem[42083] = 63015239
mem[51838] = 4984972
mask = 00101110X111001X1X10001XX0X111XXX101
mem[14789] = 244532376
mem[21292] = 736136092
mem[10874] = 513949
mem[16755] = 12361
mem[5416] = 22987
mem[39578] = 106587
mask = 010X11000X010001X1XXX0110011X1X1110X
mem[43479] = 61
mem[47199] = 15617564
mem[18265] = 6027808

View File

@@ -0,0 +1 @@
16,1,0,18,12,14,19

265
2020/input/2020/day16.txt Normal file
View File

@@ -0,0 +1,265 @@
departure location: 35-796 or 811-953
departure station: 25-224 or 248-952
departure platform: 47-867 or 885-959
departure track: 44-121 or 127-949
departure date: 49-154 or 180-960
departure time: 35-532 or 546-971
arrival location: 41-700 or 706-953
arrival station: 25-562 or 568-968
arrival platform: 31-672 or 680-969
arrival track: 43-836 or 852-961
class: 38-291 or 304-968
duration: 31-746 or 755-956
price: 46-711 or 719-971
route: 35-584 or 608-955
row: 39-618 or 640-950
seat: 25-308 or 334-954
train: 26-901 or 913-957
type: 33-130 or 142-965
wagon: 34-395 or 405-962
zone: 46-358 or 377-969
your ticket:
97,103,89,191,73,79,83,101,151,71,149,53,181,59,61,67,113,109,107,127
nearby tickets:
895,527,676,768,695,821,473,414,835,426,741,650,886,709,938,355,113,358,106,888
559,796,709,661,116,680,773,857,118,304,704,578,720,339,584,914,270,196,661,861
390,557,348,432,734,441,74,761,272,266,531,704,52,78,200,478,455,664,663,339
400,386,926,211,100,481,358,429,450,336,943,549,933,78,274,722,571,483,144,442
579,509,478,975,218,855,93,759,92,406,339,648,144,128,478,948,489,482,547,926
512,946,469,183,24,694,889,198,551,947,275,857,408,943,734,382,308,80,448,119
305,830,449,54,518,193,663,825,95,946,484,672,248,701,257,395,827,783,218,189
128,52,773,150,561,436,483,913,526,819,903,700,530,941,757,509,386,885,554,788
779,947,111,357,206,252,661,481,124,450,773,554,779,827,116,466,259,434,901,898
651,143,274,523,89,53,116,71,513,108,753,858,209,282,410,436,357,57,517,743
87,691,793,306,426,127,152,836,192,497,276,418,66,771,147,910,824,917,767,510
180,657,454,609,60,190,705,337,941,947,835,554,546,84,546,772,389,193,531,890
128,387,865,735,462,548,652,89,902,728,490,490,278,931,81,265,449,523,948,112
588,892,450,651,154,583,667,835,356,497,81,405,671,480,53,259,514,896,352,734
928,686,618,946,933,205,485,392,445,119,69,248,265,398,522,725,438,781,821,555
73,213,183,89,210,650,349,356,722,550,341,816,986,824,250,145,890,446,690,698
488,462,456,569,746,471,460,995,916,777,526,116,520,71,762,569,455,472,890,647
549,351,421,477,661,335,148,530,759,207,599,283,304,208,271,609,919,574,528,708
610,833,569,613,672,664,924,99,94,389,819,664,727,739,249,768,836,911,252,825
923,429,814,577,109,818,571,522,714,646,815,706,898,439,216,494,495,931,898,458
96,852,211,822,181,71,697,709,542,745,273,813,493,499,474,196,469,79,276,792
608,219,527,665,474,755,419,700,913,644,822,393,666,412,335,402,281,618,460,771
267,438,112,433,853,103,676,766,187,831,490,569,927,826,771,334,773,377,342,209
258,98,457,900,83,511,612,897,220,414,119,24,734,572,147,425,72,509,118,287
81,386,854,74,363,118,738,448,53,772,526,112,198,948,926,915,186,526,408,501
853,553,490,194,282,756,261,939,754,448,386,522,516,83,154,65,433,780,415,451
153,702,580,200,948,198,146,379,121,109,759,114,153,659,794,735,852,568,347,84
856,742,770,91,270,611,693,148,450,265,506,889,680,657,130,729,75,457,455,8
188,553,865,61,184,208,643,405,996,212,856,574,943,470,745,532,185,811,613,735
887,381,24,68,426,640,89,85,693,757,460,109,913,689,763,358,121,655,498,424
772,771,418,58,922,152,272,378,689,254,290,568,453,24,73,768,254,457,503,896
695,649,924,79,209,661,775,859,575,221,858,86,269,857,836,305,274,23,659,795
61,553,740,52,522,270,388,124,736,660,457,897,262,665,833,104,442,530,270,479
392,893,306,252,278,336,259,560,421,103,150,409,923,460,190,711,261,503,12,924
863,768,397,857,384,260,70,916,96,470,390,466,472,666,442,50,457,819,532,69
861,441,900,519,383,467,809,191,72,426,720,711,380,468,505,485,546,266,743,652
189,82,440,738,685,640,507,194,699,694,449,449,404,437,553,113,947,433,925,64
151,768,503,66,918,129,913,474,827,823,358,115,750,833,791,783,576,790,920,276
432,813,10,925,689,694,558,462,813,194,515,739,476,210,490,182,726,609,480,421
148,211,56,811,945,213,550,354,465,529,463,795,58,655,677,919,282,266,812,357
462,455,76,737,383,471,663,617,811,84,97,796,263,546,930,442,871,409,827,467
250,724,682,652,197,512,501,861,373,220,276,899,734,777,258,467,888,287,697,441
89,918,763,793,208,823,694,467,212,264,755,889,104,643,530,766,702,767,462,154
146,347,79,341,791,195,858,622,648,833,796,390,189,262,192,249,719,392,67,95
367,144,697,887,430,506,343,739,220,283,455,469,507,471,684,85,547,489,856,832
498,65,97,187,445,427,615,583,451,198,734,513,142,454,756,713,513,612,471,789
501,483,212,690,715,739,735,410,900,561,584,336,855,727,651,70,526,613,776,527
654,762,519,185,350,438,584,940,831,687,378,782,278,436,716,816,502,63,217,835
825,265,471,920,584,286,118,109,616,271,772,511,192,726,633,103,407,416,419,418
223,263,121,56,187,654,514,737,876,942,856,286,427,768,831,740,455,281,85,854
486,642,271,617,576,672,459,151,763,890,665,697,708,96,180,678,98,579,854,354
78,219,92,736,143,865,268,862,658,120,356,732,704,854,147,411,214,685,117,926
491,777,270,230,62,552,477,427,618,337,213,508,790,571,345,512,410,69,72,552
697,149,409,661,576,615,696,142,942,353,281,736,473,452,739,452,418,367,866,583
354,738,737,108,637,112,211,825,356,926,520,766,345,355,700,948,279,212,764,90
203,425,771,222,279,428,583,507,277,689,687,215,188,864,467,72,674,641,381,759
479,763,261,511,655,62,568,781,656,223,530,75,692,987,104,935,266,733,467,262
415,111,785,308,489,111,932,648,455,512,218,55,910,285,389,355,497,520,547,724
650,76,531,598,767,216,406,947,438,212,920,256,611,572,660,395,865,789,251,856
498,740,14,822,82,335,522,724,932,414,284,775,722,191,699,493,421,740,475,184
151,337,451,581,663,419,279,400,646,272,64,744,181,684,512,727,393,142,739,469
251,649,640,621,76,858,305,440,923,264,407,642,520,687,258,827,108,947,78,932
832,546,893,919,218,96,196,478,418,769,722,864,576,382,597,787,392,949,655,691
83,741,429,56,289,615,546,734,127,450,638,192,343,251,498,255,852,308,671,923
447,818,826,743,145,695,285,485,414,432,864,358,95,481,104,931,10,734,561,931
784,502,263,204,449,94,766,941,684,464,124,776,425,86,608,380,272,467,485,282
261,449,457,646,349,721,199,466,731,783,198,192,61,455,901,366,512,449,725,70
449,145,579,783,501,426,111,736,277,257,433,864,455,217,289,600,128,642,573,51
21,788,352,920,184,794,783,938,785,405,614,885,580,102,515,129,57,502,93,938
578,664,726,192,224,484,761,452,105,436,556,240,765,671,273,249,920,663,896,858
217,436,644,118,743,764,671,273,746,922,891,721,390,856,897,561,910,826,788,117
507,618,859,708,149,687,922,181,119,350,671,391,457,980,727,554,786,788,386,441
617,478,483,217,640,929,183,935,274,771,245,258,664,385,834,286,79,434,448,145
428,946,524,413,402,51,496,115,777,682,64,378,681,493,520,609,147,77,900,692
261,642,350,949,640,561,626,63,394,254,829,525,886,584,51,409,380,812,515,550
282,66,827,524,274,514,830,356,703,818,721,862,532,447,405,614,901,949,334,561
101,546,574,365,439,390,922,96,581,72,896,782,80,513,439,280,78,149,520,291
183,854,86,307,796,500,150,103,358,725,368,937,191,211,900,644,732,742,198,142
616,558,63,650,349,127,349,554,484,80,103,261,678,407,832,212,265,187,767,693
441,943,943,730,689,980,471,183,348,289,948,820,641,469,569,666,914,438,575,609
860,482,775,386,283,487,216,717,930,513,53,255,335,756,502,392,378,199,720,790
781,656,555,584,206,284,519,490,890,463,679,272,289,776,559,408,343,206,572,486
665,795,189,287,569,889,387,363,939,207,523,501,819,856,259,516,146,210,816,855
857,78,94,277,821,336,715,663,760,184,934,460,424,528,511,478,780,892,214,738
568,457,280,108,243,892,831,917,127,928,351,99,282,103,889,645,767,416,380,349
933,760,991,736,661,127,853,682,756,180,291,216,83,825,935,651,146,113,498,813
84,408,381,551,50,274,696,471,15,514,612,616,197,780,916,198,763,102,523,503
584,416,85,180,931,485,900,761,674,358,915,502,103,938,946,614,728,290,471,892
695,51,391,102,251,560,391,334,23,578,80,731,729,482,811,61,919,769,87,272
827,143,548,613,933,986,813,513,664,283,796,860,268,933,493,568,444,391,383,855
780,504,571,489,910,927,254,71,889,430,405,59,472,886,482,486,826,887,700,781
60,341,248,187,998,265,128,338,506,65,698,664,741,186,284,711,277,867,550,559
406,304,376,249,742,790,181,345,62,668,498,645,684,822,180,478,812,74,432,506
270,381,831,187,680,283,241,608,735,496,130,724,530,892,792,81,419,772,655,351
482,106,781,656,336,736,64,737,192,357,264,663,185,709,988,383,191,443,217,97
267,944,254,179,82,486,290,794,86,496,617,662,762,308,450,385,180,683,479,215
926,406,626,860,422,897,710,735,693,82,520,561,180,268,252,651,922,250,554,251
468,475,923,562,8,289,924,914,944,392,216,51,485,60,196,927,187,815,78,290
61,855,766,451,864,361,271,105,153,927,338,939,475,788,60,939,104,212,546,900
704,512,570,707,831,427,571,487,429,945,217,186,344,474,50,571,493,405,708,441
388,867,405,398,740,196,147,451,470,546,460,128,98,77,405,776,285,510,824,153
279,438,550,654,392,979,461,852,692,560,56,931,920,69,614,642,427,930,512,116
116,78,490,214,275,494,488,550,397,435,206,144,461,898,947,901,688,557,482,51
579,519,554,903,552,731,59,211,729,654,823,761,154,514,65,888,494,697,348,142
68,129,412,83,870,932,154,643,730,786,659,352,835,681,524,433,658,436,261,347
488,814,279,774,821,105,710,483,16,105,460,520,477,786,546,206,75,554,70,699
652,515,670,211,289,611,348,896,926,199,691,282,718,349,291,104,209,201,823,692
355,87,455,472,934,568,832,827,340,776,261,818,1,143,933,722,482,287,698,785
449,557,357,270,94,463,647,885,853,701,61,59,761,923,578,611,424,729,920,81
619,826,258,520,738,779,577,90,719,757,513,658,338,683,836,918,288,463,691,340
646,128,424,440,87,709,788,391,305,308,381,188,746,78,794,386,636,813,500,270
191,778,659,767,346,257,95,154,393,423,609,380,107,617,857,347,122,142,223,431
516,71,889,922,407,522,870,736,777,147,394,118,818,689,358,344,470,207,526,761
98,97,682,814,62,20,108,828,482,711,524,764,201,771,834,186,495,409,418,434
287,305,54,611,337,489,771,537,816,683,517,465,304,220,515,770,467,572,148,666
215,390,287,269,284,121,727,925,305,815,347,87,808,193,121,97,577,524,820,186
266,213,87,854,580,489,764,57,275,250,538,338,547,307,269,121,143,106,115,183
555,893,866,888,522,195,404,557,455,647,774,494,818,109,784,571,66,822,671,440
658,555,105,338,505,661,573,740,127,508,56,667,642,449,658,111,120,398,255,60
277,65,550,280,640,817,900,262,490,419,791,201,266,548,881,219,350,287,260,821
494,478,573,415,928,70,821,231,394,121,383,562,666,440,664,77,474,348,380,820
666,260,412,534,918,655,449,283,743,463,90,727,558,76,113,711,612,824,745,941
898,815,783,816,94,289,69,222,480,201,108,640,580,522,205,117,468,715,127,781
942,472,648,744,925,112,903,781,410,106,897,274,306,818,781,575,896,664,450,647
407,390,945,269,818,584,616,96,642,185,813,127,900,830,708,475,221,888,366,650
249,407,939,915,95,265,439,436,164,71,766,943,197,110,115,75,890,63,84,268
277,82,617,513,128,334,114,549,621,284,653,709,818,104,836,478,892,181,113,205
443,473,198,416,918,642,646,795,900,488,1,920,728,443,824,188,695,578,522,78
80,443,451,573,181,518,592,735,688,110,919,143,387,64,142,411,193,252,643,919
392,492,486,95,528,252,448,934,527,579,796,902,822,305,477,270,468,923,859,889
643,356,190,830,863,153,76,91,932,457,691,880,344,775,108,512,512,286,61,769
146,490,417,429,687,395,525,477,930,521,61,268,444,184,64,77,235,466,110,727
461,582,343,666,825,188,84,941,886,107,382,129,487,660,261,173,192,72,53,913
128,935,546,419,143,787,83,779,577,431,859,658,496,475,403,52,380,357,863,548
472,900,916,942,777,776,433,659,422,357,53,826,204,182,19,686,575,796,509,532
908,201,268,129,858,495,916,711,697,854,224,757,308,406,484,477,426,503,687,89
794,628,392,180,822,508,555,787,57,202,568,387,507,937,185,916,575,514,103,91
519,348,79,82,745,708,515,99,111,416,564,411,385,652,76,409,818,758,469,473
489,121,342,573,488,439,504,435,519,919,62,265,764,690,927,622,788,348,823,556
660,501,588,654,478,660,725,721,653,352,581,343,88,196,286,616,787,532,830,644
766,525,582,471,947,198,501,89,104,900,745,685,362,455,249,211,389,812,506,113
425,506,457,255,289,492,498,468,707,766,180,386,609,742,57,564,828,782,769,515
275,363,148,699,351,525,812,767,67,932,87,551,308,866,112,188,304,440,431,392
424,414,510,822,223,709,419,55,73,546,203,404,759,860,279,273,927,474,347,861
505,439,783,384,765,719,58,415,353,778,418,674,147,433,794,93,945,823,411,70
918,250,934,436,812,385,207,675,481,383,405,345,208,618,681,84,87,785,616,215
264,94,350,861,116,502,155,946,578,938,391,187,96,666,491,927,653,260,220,429
391,895,497,648,495,81,256,887,348,181,216,354,213,657,501,561,743,483,824,998
938,854,791,777,740,100,767,862,648,432,942,104,562,93,670,216,650,6,220,526
255,110,477,344,347,887,124,552,82,895,147,58,260,77,424,813,615,444,223,928
925,691,345,895,708,388,860,249,563,119,503,928,865,97,498,492,202,426,661,117
472,96,280,424,480,440,348,896,73,503,718,862,730,899,260,941,469,337,186,259
708,646,6,220,482,700,202,918,889,337,831,130,656,890,921,766,530,210,66,381
524,508,528,346,649,77,433,939,935,793,423,304,318,97,671,932,562,736,726,253
145,215,651,721,675,819,206,696,723,111,216,512,385,285,928,726,709,495,437,666
118,288,95,866,435,102,353,196,335,935,145,105,125,508,306,438,818,261,854,736
656,529,742,807,189,416,856,290,414,933,88,572,348,473,925,104,831,186,281,665
249,198,417,714,279,936,813,814,823,357,351,89,304,60,936,503,103,377,381,505
787,933,280,527,492,704,405,252,468,785,305,457,431,193,378,521,896,283,422,741
814,860,216,405,129,790,490,906,465,929,181,478,667,93,497,888,423,641,866,502
834,521,429,529,388,792,477,216,440,683,739,251,831,360,770,650,51,337,727,205
204,401,110,794,394,682,569,95,190,287,720,515,70,524,440,191,501,442,853,644
186,259,509,476,664,687,865,420,186,220,480,651,229,933,153,765,497,546,471,580
405,916,150,514,702,387,741,939,385,896,576,824,487,504,866,867,356,734,889,581
734,358,829,735,548,142,437,388,331,773,455,182,152,336,459,489,483,79,581,470
67,656,820,264,406,739,698,51,516,547,822,128,580,191,71,0,562,857,550,103
513,490,822,982,934,763,555,194,145,789,99,917,380,253,504,388,344,420,75,180
101,662,492,414,147,343,818,668,490,488,69,715,406,731,552,81,357,477,945,833
495,931,719,384,274,145,366,98,501,356,654,437,507,898,248,406,387,556,757,381
410,423,821,395,984,521,862,260,190,611,654,709,213,145,264,84,935,496,248,385
494,94,549,59,784,488,435,685,191,769,181,143,213,441,918,7,90,446,514,734
886,505,744,566,855,288,441,655,487,507,417,744,901,786,278,431,211,769,778,570
85,812,930,667,610,117,735,881,706,414,65,857,289,287,758,109,556,891,103,84
79,476,445,211,515,707,725,557,859,80,393,792,600,470,427,478,120,390,504,930
552,896,73,618,449,447,692,818,662,887,338,820,690,185,406,553,586,643,335,75
745,668,406,877,551,76,756,501,785,98,459,304,519,720,57,469,416,739,668,793
276,834,581,258,764,557,184,760,186,859,857,175,939,924,578,759,866,349,681,287
578,153,766,489,349,406,276,380,709,55,852,304,222,859,900,878,492,347,437,925
579,665,790,901,416,929,75,914,940,205,814,354,196,681,909,432,652,265,651,194
58,505,344,79,528,418,731,121,604,142,270,150,780,257,88,355,789,935,83,337
455,419,391,189,187,497,687,531,130,129,400,856,206,276,260,273,727,696,571,769
886,920,698,784,582,611,698,856,440,248,475,392,876,463,190,443,914,70,697,222
91,205,353,920,477,475,153,672,948,573,485,270,665,480,63,222,784,473,457,993
738,745,212,346,653,828,50,860,379,118,921,694,540,819,214,147,657,94,55,497
793,17,194,925,150,350,755,554,508,252,527,289,55,253,694,509,769,102,59,118
461,250,272,394,480,248,758,890,667,128,575,217,842,700,649,792,212,693,897,96
926,928,558,452,588,515,289,459,221,481,913,60,465,61,143,580,415,744,442,685
267,152,772,891,153,257,448,895,115,612,520,538,710,698,885,463,195,746,86,466
776,89,497,277,344,684,573,414,194,455,667,626,127,523,271,283,340,446,471,784
334,641,853,473,278,452,94,763,644,690,831,738,136,256,733,922,935,462,768,776
249,142,256,97,75,562,458,828,865,680,444,361,644,464,930,423,789,84,688,419
706,52,714,347,510,782,286,428,708,113,505,89,901,834,770,120,511,427,204,63
86,62,501,468,64,885,105,641,214,825,453,560,388,764,79,123,690,413,380,487
96,885,505,689,938,511,483,189,202,97,355,792,500,689,392,336,713,740,853,788
531,89,925,122,261,479,923,864,816,106,568,453,692,518,556,929,709,78,928,790
456,513,395,212,757,730,729,653,724,975,429,756,457,418,489,725,929,528,437,184
947,854,154,255,95,70,724,682,226,94,423,187,641,616,252,105,885,558,658,695
663,386,584,556,209,277,542,732,552,106,818,819,690,415,415,478,216,219,815,218
272,743,99,339,74,647,72,488,577,353,89,426,91,745,823,135,782,757,773,57
81,826,492,113,562,66,430,287,830,370,284,434,547,142,899,338,765,378,732,644
644,350,490,929,901,816,942,69,493,257,118,695,858,713,79,222,500,343,116,608
487,412,702,771,418,722,857,475,437,450,812,830,250,490,561,553,658,709,90,462
550,60,90,145,429,203,991,509,94,283,500,608,468,892,460,617,916,277,857,474
524,695,889,437,582,895,901,422,761,691,107,117,476,54,818,807,269,517,928,894
507,715,776,831,120,385,338,415,377,95,579,445,696,785,91,696,274,568,307,415
85,90,129,78,940,774,521,468,459,101,431,348,255,205,416,24,66,434,287,755
897,937,896,507,895,657,932,858,819,890,471,430,994,681,410,420,925,498,280,940
50,941,470,745,458,72,271,740,288,546,549,125,504,467,248,254,184,767,91,51
575,461,649,149,54,762,925,613,741,584,408,922,738,305,377,703,433,410,755,81
507,269,148,886,180,659,817,71,466,476,111,336,498,782,361,707,915,576,650,478
764,475,57,763,925,88,515,555,803,641,351,414,271,548,121,657,719,467,860,473
484,764,910,487,191,204,721,682,113,187,926,569,441,337,761,787,142,202,353,106
714,437,468,562,811,198,443,420,118,610,743,923,666,643,513,743,934,354,433,357
513,578,744,574,721,739,551,488,207,574,865,145,901,103,701,508,218,818,264,777
684,572,186,679,944,776,78,105,947,212,937,424,857,412,929,787,532,186,260,812
423,259,558,577,648,425,306,672,307,714,550,573,348,612,249,744,253,521,427,193
270,273,474,746,531,836,269,443,471,433,100,732,625,510,654,557,894,420,688,248
825,522,945,833,262,507,82,601,680,945,446,946,921,89,477,513,411,276,70,151
472,664,80,343,277,669,268,224,59,791,347,342,128,934,645,741,375,379,687,185
668,894,212,392,95,491,791,264,573,812,894,698,728,73,767,448,794,634,116,213
885,52,940,305,788,558,447,705,744,526,557,571,549,777,690,886,393,392,377,518
107,344,897,693,767,468,249,560,570,289,121,341,608,435,412,860,399,778,646,470
429,351,515,87,726,888,523,650,418,464,803,200,666,56,813,829,670,816,192,657
279,187,280,500,382,942,52,687,853,62,491,306,934,506,699,321,796,381,934,55
69,772,786,783,722,222,759,358,265,853,710,445,567,920,770,645,936,224,80,733
377,795,794,438,256,813,829,852,511,919,872,662,200,188,457,889,942,467,519,503
437,96,211,829,931,335,347,811,409,700,736,20,119,525,395,338,930,474,734,486
502,199,287,285,471,551,488,252,895,466,104,415,156,945,512,51,358,830,340,859
129,340,461,772,670,686,812,386,438,744,662,590,532,811,577,143,641,888,308,934
85,815,948,571,117,949,516,980,822,58,258,737,856,573,212,819,923,531,914,949
945,531,934,344,917,692,343,281,291,288,164,811,697,899,897,187,928,266,285,852
377,420,283,655,127,421,221,740,550,611,50,306,417,80,610,392,429,705,477,852
116,211,852,422,484,933,215,215,760,202,349,789,440,685,615,536,149,616,729,568
497,393,743,867,60,863,150,13,939,149,56,527,783,111,782,493,671,280,260,923
742,284,811,708,148,710,925,265,734,413,384,731,992,689,467,784,103,886,259,73
484,349,479,705,188,188,933,465,221,722,72,571,274,735,456,866,192,818,76,393
942,998,248,914,272,380,380,924,461,61,291,392,154,709,420,574,813,493,786,511
55,50,353,792,84,721,865,223,205,833,997,930,579,761,583,98,727,744,647,780
766,82,280,201,943,695,516,898,68,143,682,205,387,780,433,230,744,200,690,936
205,558,687,475,90,337,920,665,529,196,456,445,283,55,120,749,60,304,553,389

View File

@@ -0,0 +1,8 @@
##.#...#
#..##...
....#..#
....####
#.#....#
###.#.#.
.#.#.#..
.#.....#

372
2020/input/2020/day18.txt Normal file
View File

@@ -0,0 +1,372 @@
(7 * (3 + 8 + 8 + 7) + (6 + 8 * 2 + 5 + 2 * 6) * (5 + 2) * 9) + ((7 * 4 + 8) * 6 * 8 + 9) * 7 * 2 * 2
6 * ((9 + 4) * (6 * 7 + 5 + 8 * 2))
7 * 8 + 2 + 8 * (8 * 4) * (4 + 8)
(9 + 3 + 2 * 5 * 8) + 9 + 5 * 2 * 5 * (6 * 6 * 4 + 6 * 9 * 3)
6 * 6 * 4 * (6 + (3 * 9 * 2) + 9 + (4 + 7 + 7))
7 * ((4 * 6 + 4 + 6 * 8 + 6) + (2 * 7 * 8 + 5 * 3 + 7) + (5 * 5 * 5 * 7) + 8 * 7)
(8 + 9 * 7 * 9 + 6) + (7 + 5) + 6
5 * (6 * (3 + 2 + 9)) + 8 + 3 + 5 * (4 + 3 * 8 * 8 * 6 * 2)
4 + (3 + 4 * (4 + 9 + 3) * (4 * 8 * 4 * 9))
4 * 4 * 6 * 2 + ((8 * 4 * 3 + 6) * 5) + 6
(8 * (8 + 5 + 5 * 7) * 9 + 2 + 9) * 4 + 9 * ((3 + 3) + 8) + 9
((9 + 8 * 3 + 2 + 9 + 8) * 3 + (3 + 7 * 6) * 9 * 2) + 3 * 7
5 + 5 * (5 * (6 + 6 + 6 + 7) * 7 + (9 * 4) * 4 * (8 * 9))
7 * (2 * 7 + 3 + 5 + 5 * 2) + 4 + 3 * 3 + 5
(4 + 5 * (2 * 4 + 5 * 2 * 7 + 5) + 2 + 9) + 4 + 9 * 9 * 3
7 * 6 + (6 * 2 + 4 + 5 * 8) + (6 * 2 * (4 * 7 * 2) + 9 * (5 * 2 * 4) + (3 + 2 * 5)) * 8
2 + ((9 * 3 * 3 * 3) * (5 * 9 + 6 + 7 + 6 + 8) * 3)
7 * ((9 + 7 + 4 * 3 * 4 + 4) + 4 * 3) * 5 * 3 * 7
8 * (3 + 5 * 9 + 4) * 6 + 4
7 + 6 * 7 * ((7 * 6 * 2) * 3) * 5 * 7
8 + 5 * 4 * (3 + 5 * (8 + 5 * 2) + 6) + 6
4 * 8 + ((3 * 5 * 4) + 7) + (4 * 2)
((5 + 8 + 7 + 6 * 6 + 3) + 4 * 3 * (5 * 2) * 5 * (2 * 9)) + 6 + 3 * (2 * (2 + 4 + 8) * 4) + (9 + 3 + 6 * (9 + 5 * 6 * 3 * 8 * 5) + (4 * 6) + (6 * 3 + 2 + 8))
(3 + 4 + 8) + 6 * (7 * 6 * (9 * 3 * 5 * 5 * 4 * 5) + (6 + 4) * (5 * 2 * 3 + 3) + (2 * 7)) + 2 * 4
6 * (6 * 9 * (3 * 9) * 4 + 9) + 6
4 + 6 * 7 * ((3 + 5 + 3) * (6 + 3 * 9 + 6 * 8 * 9) + 6 * 4) * 8
5 + (6 + 9 * (7 * 8 * 8 * 3 * 4) + 2) * 4 * 2
(2 * 7 * 6 + 9 + (3 * 6 + 4 * 7 + 5) + 8) + 7 + 7 * 8
2 + (6 + 4 + (5 + 5) * 7) * 2 + 7 * 5
4 + 9 * 3 + 8 * 6
(5 + 5 + 9 * 8 * (4 * 5 + 6 + 3 * 8 * 3) + 6) + 9 + 9
(8 * 4 * 7 + 9 + 6 * 9) * (9 + 2 * 2) + 3
((9 * 4 + 8 + 4 * 2 + 2) * 3 + (6 + 9 * 5 * 4) * 4 + 6 * 5) * 5 * 3 * 5 + (3 + 5 * 4)
5 + (5 * 3) * (2 + 8) * (3 + 6 + 4 * 6 + 7 + 7) * 5 * 7
6 * 6 * 7 * (5 * 4 + 2 + 6 + (8 + 6 + 4 + 9 * 5))
2 * 9 + (2 * (8 * 7 + 6 + 5 + 3) + 2 + 9 * (3 * 9 * 4 * 7 * 7 + 5) + 3) + (4 + 6 * 4 + 6)
(9 + (8 * 8 + 2 + 2 * 6 + 6)) * 8 + 4 + 3 + (9 + 3 + 9 + 9 * 4 * 8) * 2
8 * 4 * (4 * (3 + 7 * 7 + 3) + 8 * (5 + 2 + 3) * 2) + 9
5 + (6 * (3 * 3 + 7 * 3) * (4 * 4) + 2 * 4 * 4)
3 + (5 * 8 * 9 * 3 + 9 * (6 * 7)) * 9 + 3
3 * (9 * 3 + (5 + 4 * 7 + 3 + 8)) + 4 * 2 * 3
8 * 9 + 6 + (7 + 7 + 9 * 8 * 5 * 6) * 5
(8 + 9 + 3 + 7 * 7) + 2 + 9 + (8 + 7 + 4 + 2) + 9
4 * (2 * (7 * 4 + 2 + 9 + 6 + 7) + (4 + 2) * 3 + 9 + 6) + 6 * 4 + 7 * 5
(3 * 4 + (5 * 8 * 2) * (7 + 8)) + 7 + 8 + 5 + ((6 * 9) * 4 * 5)
4 + ((9 + 9) + (7 * 8 + 2 * 8 * 2) + 9) + 2 + 7 * 2
8 * 3 * (9 + 5 + 8 + 5)
4 + 4 + (6 + 2 * 7 + 9 + 6 * 5)
((8 + 3 * 8 * 2) + 7 + 7 * (7 * 7 * 7 + 3) * 9 * (9 * 4 + 7)) + 4 + 6
6 + (7 * 2 + 4 + 5 + 4) + 9 + ((7 * 9) * 7) * 5
(7 * 3 * 2) * ((9 + 6 * 2 * 6 * 3) + (6 * 7) + 3 + (6 + 5 * 5 + 4 + 9 * 6) * 4 + 9) + 4 + 7 + 6
9 * (3 * (9 + 8)) * 4
6 * (4 * 2 * (9 * 5 * 4 + 7 + 9) + 6 + (3 + 6 * 2)) * 5 * (3 * (2 + 6 * 8 * 6 + 3 + 7) * 8 * 7 * (9 * 8 * 7 + 7 + 9) * 7) + 3 + 6
7 + 3 * ((6 * 3 * 9) + 3 * 9)
7 * ((4 + 4 * 4 * 9 * 7) + 2 * 9) * 8 * 6 * 6 + 3
6 + 5 + (5 + 3 * (3 + 7 + 9 * 3) * 6) + 3 + ((2 * 3 * 4 + 4) * 6 + (3 + 3) + 2)
9 + ((8 * 9 * 3 * 2) * 5 + 8)
(2 + 7) * 3 * (8 + 5) + 9
4 * (5 + 4 + 6 * (9 * 4 + 8 * 4 * 7 * 3) * (4 * 4 * 6) * (9 + 7 + 8 * 4)) * (4 + 4 + 9 + 8) + 7 * 8 + 5
((7 * 4 * 4 * 3) * 4 + 2 * 2 + 2) * 9 + 9 * 8 + 9
4 + 6 + 2 * (5 + 3 + 8 * 4)
((7 + 6) + 3 * 3 * 5) * ((9 * 3 + 5 + 8) + (3 + 8 * 8 + 7 + 5 * 6) + 2 * 5 + (7 + 9 + 2)) + (4 * 2 * (5 + 8 + 5 + 3) * 5 + 6 * 2) + 6 * 5 * (2 * (9 + 4) * (7 * 8) * 8 + 7)
6 + 5 + 5 + 2 * 5
5 + 5 + 8 * 8 + 2 + 6
(3 * (4 * 6 * 8 * 2)) + 3
(5 + 6 * 3 + 5 * 2) * 5 * (3 * 5 + 2 * 7 * 9 * 3) + 5 * ((6 + 2 * 7 + 2 + 4 + 2) * 9 + 6) + 7
(7 + 7 * 4 * 7) * ((8 * 5 * 9) + 6 * 9 + 3 * 3 * 9) * 8 * ((3 * 5 * 2 + 6 + 5) * 7 + (6 * 2 * 7 * 7) + 8 + 8 + 6)
(3 * 6 + 7 + 6 + 3 + 7) * 4 * 7 * ((9 + 3 + 6) * 5 + 3 + (5 * 7 + 4 + 5 * 2) + 5) * 5 * 9
7 * ((7 + 6 + 2 + 9) + 3 * 4 + 9 + 2 + 2) + 2
3 * 8 * 2 * (6 * 2 * 2 + 4 * 8) + 8 + 7
8 + 3 + ((4 * 6 * 5 * 7) * 9 + 9 + 8 * 4)
(6 + 4 + (6 + 3 + 3 + 3) + 6) * 9
2 * 6 * (5 + 2) * (6 * 6 + 7 + 2)
4 + (8 + 2 + 4) * 4 * 5 + (9 * 5 + 9) + 8
6 * 3 * 9 + 6 + (2 * 4 * 3 + 2 * 5 * 3) * 6
2 + (8 + 5 * 7 + 4 + 7 * (2 + 9 * 6 * 5 * 3 + 3)) + 9 * 4
(9 + (2 + 6 + 7 * 4 * 8) + 9 * 4 + 9) * 3 + 8 * 8
2 * (9 * 5 * 9 + (8 * 9 + 5)) * 8 * 8
3 + 6 + 2 * 3 * 9 + 9
8 * 7 + 8 * (5 + 6) * 5 + 4
4 * (6 * 2 * (3 + 6 * 3) + 7 * 5 + 6)
(7 * 3 * 7 * 4 * 3 * 2) * (9 + 8 * 9) + 9 * (4 * 5 + 3 + 5 + 9)
9 + 8 * 3 * 4 + (9 + 8 * 9) + (4 * (6 * 4 * 9 * 5 + 6 + 4) + 8 + 7 + (4 * 9))
2 * (4 * (3 + 4 + 8 + 5) * 8 * 6)
8 * (8 * 2 * 6 + 6 + 6) * 8
(9 + 3 * 4 * 9 + 5 * 5) * 4
(9 * 9 * 4 * 4 + (6 * 2) + (3 + 3 * 2)) + 3 + ((2 * 3 + 8 * 4 * 8 * 2) + 2 + 3)
7 * (9 * (6 + 3 + 7)) * ((8 + 3 + 3 * 3 + 3 + 7) + 4 + 5 + 3 * (6 * 4 * 6 * 6 + 2 * 5) + (2 + 3 + 9 + 3 * 6 + 4)) + 6
8 + 6 * (3 + 5 + 6 + 9) * 4
(6 + 7 + 7 + 7 * 6 + 5) + 3 * 5 * 4 * 5 * 6
(2 * 9 + 9 + 3 * 7 + 6) + 3 + 7 + 4 + 9
(7 + (8 * 7 * 4 * 7 * 2 + 4) + (5 + 2 * 2 + 2 * 2 * 6)) * 3 * 4 + (4 * 2 + 4 * 6 + 3 * (8 * 6 + 4 * 3 * 7)) * 6
2 * (3 * (5 * 7 * 8 * 7 + 8) + (6 * 3 + 5) + 5 + 9)
8 * 4 + ((7 + 2 + 8) + (2 * 8 * 4 * 4 + 4 * 7) * 2) * 5 * 4
2 * 6 * 2
2 + (2 + 6 * 5 * 9) + ((8 + 2 * 6 * 5 * 5) * 7 + 3) + 3
((9 + 4 + 6 * 3 + 9) * 5) * (7 * 2 * 7 * 5 * 2) + 7 + 9 + 7
2 + 2 * 8 + 8
4 + 6 + 4 * 7
4 + 5 + 5 * 8 * (8 + 4 + (2 * 8 + 9 * 9 + 4 + 5))
(7 + 2 + (8 * 4 * 2 + 9 * 6) * 4) * 2 + (9 * 2 * 8 * 9 * 4)
4 + 9 + 6 * (4 * 6) + 7
6 + 4 + 8 * (7 * 9 + 7)
3 * 2 + 2 + 9 + (2 * 9 * 2 * 8 * 2 * (2 + 8 + 9 * 9 + 7)) * 7
9 + 9 + 5
(2 + 3 * 3) + 7
(9 * 7 + (8 + 8 * 6) + 2 * 7 * 3) + 6 * (5 * (2 + 9 + 9 + 6) + 6) * 8 * (4 + 4 * 6 * 5 + 5) * 8
7 + 4 + (4 * 2 + (2 * 7 + 2 + 4 + 2 + 5) + 9 * (9 * 7 + 7)) + 9 + 7 + (8 + 9 * 7 + 2 + (7 * 8 * 5 * 4 + 6 + 8))
(8 * 3) * (9 + 2 * 7 * 7 + 7) * 6 * 8 + 8 + (9 + 9 + 3 * 5 + 3)
4 * 5 + 2 + 4
((7 + 3 * 8 + 3) * 8 + 4 + 4 * 4 + 8) * 5 + 9 * (3 * 9 + 8 * 7 * 9 * 4) + 7
(8 + 6 + 7 + 9) + 8 * 6 * (5 + 2 + 3) * 8
(9 * 8 * (6 * 5) + 9) + 4 + 8 + 8 * 8
(4 + 5 * 9) * 7 + 7 * 6 + 8 * (2 + 5 * 8)
(4 + 3 + (6 + 2 + 2 + 6 * 6 * 2) * 4 * 2 * 9) + 3
8 * (5 + 8 + 2 * 7) + 2 + ((5 * 6 + 4 + 7 + 6 * 5) * 7 * 3 + 8)
2 + 5 + (6 * 3 + 2) + 8
2 + 9 * 6 * 5 + 5
3 * 3 + 7
(9 + 4 * 9) + 5 + (2 * 6 * (6 + 9) + 2 + 6) * 2 * ((9 * 6 + 7 * 3) + 5 * 2 + 3 * 9)
2 + 6 + ((6 * 9 * 9 * 8 * 9) + 9) * (5 + 2 * 5 * (3 + 5 * 8 * 5 * 2 * 9) * 8) * ((7 + 9 + 3 + 6 + 5) * 4 * 5)
3 * 9 * (5 + (3 * 4 * 2 + 8) + 5 * 3) + 4
9 * (9 * 3 + 3 + 4 + 7 + 4) + 3
2 * 9 + 3 * 9 + 5 + 9
(6 + (6 * 6 * 6 + 7 + 7 + 5) * 5) + 3 + 4 * 9
(2 * 8 * 8 * 6 * 8) + (5 + (5 * 6) * (8 + 5 + 7 * 7 + 2) + (6 * 4 + 7 + 5) + (3 + 5 + 8 + 6)) * 8 + ((8 * 3 + 3 * 7) * 4 + (3 * 8 * 4))
4 + ((9 * 2 * 9 * 9 * 7 + 5) * 6) * 7 * 7 + 5 * 8
(3 * 6 + 6 * (5 + 6 * 4 * 6 + 2 + 9)) * 9 * 9 + (2 * 7 * 2 * 5)
6 + 2 + (8 + 6)
6 + 3 * (3 + 3) + 8 * (9 * 6)
(2 * 8 + 4 + 5) + 7
7 + (2 * 9 * 5 * 6)
2 + 9 + ((7 + 3 + 3 * 9) * 6 + (5 + 2 + 8 + 5 * 6) * 7 + 8)
((4 + 9 + 8 * 6 + 8 * 9) + 8) * 6
9 * (9 * 3 + (3 * 8 * 8 * 7) * (4 + 8) + 8 * (5 * 3 + 2 + 4 * 3))
9 * (7 + (3 * 5 * 5 + 3 * 7)) + (5 * 3 + (4 * 7 * 7 + 8) * (3 * 7 * 5 * 6) * 8) * 5 + (2 * 7) * 4
4 * ((2 + 3 * 2 * 2 + 3) + 4 * 4 * 4 * 5 + (3 + 3 * 9 * 9 + 7)) * 9
8 + 7 * 4 * 3 * (5 + 9 + 8 * 7 * 3)
9 + (4 * (2 * 6 + 7) + 5 * 4 + 8 + (6 + 7 * 8 * 2)) + 9 + 5 + 8
3 * ((5 * 2 * 8 * 7 * 2 + 4) * (3 * 3 * 5 + 2) + 7 + 8) * 8 * 2 + 3
(8 * 2 + 5 + (4 * 9 * 7)) * 5 + (9 * 8) * (5 * (7 * 8 + 4 * 4) + 3)
((7 * 6 + 9 + 7 + 9 + 9) * 2 * 8 + (6 + 4 * 7 * 2 * 2) * 7 + (2 + 9 + 9 + 5 + 4)) * 5 * 2 + 7
7 + 2
4 * ((2 * 6) * 5 * 5 + 9 * (7 * 7 * 3 + 8)) + 2
6 * 8 + 5 + 4 * (5 + 8)
4 + 6 * (4 * 5 * 3 * 5 * 5 * 6) * 8 * 5
7 + ((6 * 6 + 2) + 7 * 7 + 7 * 9 * 6) + 6
(7 + 3 * (2 * 5 + 3 * 9)) + 2 * 2
6 + 3
2 * 8 * (3 + 8 * (4 + 6 * 4) * 8 * 2)
8 * ((4 + 8 * 5 + 7) + 6 + (4 + 8 + 4 + 9 * 7 + 9) + 2) + 5
(7 + 7 + 2 + 3 + 6 * 3) * ((7 + 5 + 8 + 5 * 6) + 4 + 6 * (3 + 3) * (4 + 6 * 9 * 6 + 4) * 7) * 3 * 9 + 5 + 4
5 * 7 * (5 * (2 + 5 * 7 + 7 * 5) + 9) + 3
8 + 2 * 4 * 3 + (8 + 3 + 4 + 3 + 2 * (4 * 5)) * 5
3 + (8 * 3) * 7 + 4 * 5 * 2
(7 * (7 * 2 * 7 * 3) * 3 + 2 + 7 * 6) * 4 * 6 + 6 + 6
(5 + 2 + 2 * 8 + (2 * 9 + 7 + 3) + 5) * 9
(6 + (7 + 8 * 2 + 9) + (7 * 3 * 4 * 5) + 6 * 3 * 4) + (3 * 2 * 5)
4 + 7 + (8 * 7 + (5 * 4))
8 * 2 * 5 * (9 + 4) + (3 * 7)
(3 + 4 + 8 + 6 + 2) * 9 + 6 + 6 + 3
(9 + (3 * 4 * 5 * 8 + 5) + (5 + 8)) + 5 * ((2 + 5) + (7 + 9) * 2) * (6 * 3) + 8
9 * (3 + 9 + 8 * (9 + 7 + 9 + 8 * 6) + 8 * 8) + 2
7 * ((9 * 2 + 8 * 4 + 7) * 4 + 3 + (5 * 3 * 5 + 3 + 4)) * 5 * 7
5 + 2 + (8 * 8) + 8
4 * (4 * 9 + (7 * 6 + 2 * 2 + 5 + 8) * 9 + 7) * 3 * 7
9 + 9 + (4 * (8 + 2 * 5 * 9 + 9 * 2) * 4 * 7) + (6 + 2) * ((8 * 7) + 9 * (7 + 7 * 7) + 2 + 5 + 2) + 6
9 + 4 + (3 * 9 * 3 * 9) + (3 + (2 + 9 + 9 + 8 + 7) + 5 + 9 * 3) * 7 * (4 + 7 * 8 + 7 * (4 * 2 + 5 * 8 + 9 + 8) + 3)
6 + (2 + 6) * (6 * 2 * 2 + 7) * 4 * 6
6 * (2 + (6 * 7 + 7 * 9) * 6) * 3 * 8 + 3
8 + (5 + 4 + 6)
9 + 2 * (5 * 5 * 5) * 2 * 5
4 * 4 * ((3 * 3) * (9 + 7 + 5) + 5 + 9) + 7 * (4 * 2 * 4) * 7
((4 * 5 * 7 * 7 + 3) * 9) * (6 * (7 * 8 * 7 + 3 + 7) + (4 * 2 + 3 + 3) * 4 + 6)
4 * 2 + 3 + 2 * (2 + 2 * 2 * 8)
4 + ((3 + 8) * 7 + 2 + (9 + 4 + 9 + 3 + 4 + 6) * (7 * 5 + 8)) + 4 + 5 * 8 + 2
(5 * 2) + 3 + (3 + 9) + 4 + 4 * 5
6 + (5 + 8 + 6 + (7 + 5 + 9)) + (3 * 5 + 8 * 3 * 4) * 4 + 4 + 5
((7 + 4 * 6) * 7 * 2 + 6) * 7 + 8
7 * 5
2 + 9 * 4 + 9 + 4 + (8 * 9)
5 + 5 * ((5 + 6) + 2 * 4) * (8 + 8 * 5) + 3
5 * 5
4 * 3 * 4 + 3 * (7 * 9) + 4
4 + 4 * (8 * 3 + 2 * 8 + 2) + 4 + 3
(8 + 5 + 4 * 4 + 6 * 9) + 8 * 6 * 3
8 + 6 + 3 + ((2 * 9 + 2) + (7 + 7 + 3)) + 6
(4 + 5 + 8) * 8 + (7 * 9 + 3 * 3 + 9 + (8 + 5 + 7 + 3 + 9)) + (3 * 3) * 8
(4 + 4 + 4 * 6 + 4 + 9) * 6 * ((8 + 6 + 3 + 2 * 8 + 2) * 4 + 6 * 8 * 7) * 5
6 * 6 + 3 * (2 + 7 + 3) * 4 + 5
((2 * 4 + 3 * 3 * 9 * 3) * 7) + 2 + 8 + 6 * 2
5 * (5 * 4) + 6
((7 + 6) + 7) + 3 * 2 * 9 * 6 + 4
6 + 8 + ((4 * 9 + 5) * 4) * (5 + 7 + 8 * 8 * 2) + 9
8 * 4 * 8 * 9 * 2
5 + 2 + (8 + 9 * 6 * 7 * 6) * 8
6 * (9 * 5) + (5 + 2 + 6 * 8) * 6 * 6 * (4 + 7 + 8 * 8)
2 * 3 * 6 * 8
3 + (4 + 5 * 8 * 8) * 2 * (9 * (5 * 3 + 8 + 6) * 2 + (5 * 7 * 3) * (4 + 5) + 7)
6 * (5 * 4) * 5 + 4 + (6 + 2) + 6
2 * (4 * (7 + 2 + 3 + 3 * 8) * (9 + 3 * 3) + (6 * 8 * 5 * 7) + (6 + 5) + 7) * (3 + 8 + (5 + 4 + 8 + 6) * 3 + 2 + 3) * 8 + (3 * 3) * 9
(5 + (4 * 8 * 7) + 7 * (7 * 9 + 2 + 5 + 6)) + 4
6 + ((3 + 9) * 4)
9 + ((4 + 4 + 5 * 6) * 8) * 2
(4 + 2) * 3 * 3 + 3
5 + 2 + (8 + 7 + 5)
6 + (7 + 4 * 9 * (6 + 8 * 8 + 3) * 8)
3 + 3 * 6 * 3 + (4 * (2 + 6 * 7) * 8)
7 * 5 + 8 * 7 + (9 + 4 * (7 + 6 + 2 * 7 * 9) + 9 + 9 * 4) + (3 + 6 + 5 * 6 * 4 + 9)
5 + (9 * (5 * 7 * 6 * 8) + (8 * 3) * 6 + (2 + 7 * 8)) * (9 + (5 + 7 * 2 * 6 + 9 + 7) + 4 + 8 * 3) * 7
(6 + 7 * 7 * 9 * 4) * 3 + (5 + 7) * 7 * 5 * 6
(9 + 6 * 5 + 3) * (2 + 6 + 6) + 4 * 6 + 3
5 + 8 + ((9 + 8) * (3 * 3 + 8 * 8) * 2 + 3) * 6 * 4
((3 + 9 * 2 * 8 * 7) * 7 * 8 + 3 + 7) * (8 * 9) * 5
5 + 3 + (4 * 4 * (8 * 8 + 4 * 4) + 4 + 5 * 6) * 4 + 2 + 7
5 + ((6 + 4 + 9 + 3) * 6 + (2 + 4 * 9 + 4 + 7 + 7)) + 4 + 9 * 8
2 + 4 * 7 * 5 * ((5 + 4 + 6) + 4 * 4)
8 * 6 + (4 + 8 * 5 * 6 + 4 * 9) * 9 + (2 + 8)
((8 + 3 * 2 * 6) * (7 + 8 * 8) * 9 + (2 + 5) + 4) * (2 * 9 * 5 + (9 * 4 * 2 + 7 + 8) * 2 + 2) * 6
4 * ((5 * 5 + 6 * 8 * 5 * 9) + 4 * (3 + 7 * 6 + 4) * 4) + 2 * ((9 + 8 + 9) + 9 * 2) * 8 + 4
2 * 8 * 6
(7 + (7 + 8 * 9) * 7 + (5 * 8 * 6 * 9 + 6 * 4)) + ((5 + 9 * 6 + 7) + 8 + 7 + (8 * 7 * 4 + 5 + 2) * 5 + (9 + 3 + 9 * 2 * 6 * 3)) * (4 + 5 * 4) + (8 * (5 * 5) * 9 * (3 * 3) + 5) * 4
(6 + 5 + 5 * 5) * 4 + ((8 + 6 + 8) + 5 + 5 + 7 * 9)
9 * (9 * 2 + 4 * 2 * 4)
4 + (6 + 2) * (4 + 2 + 2 * 5) + 2
5 * (6 + 8 + 5 * 2 * (7 * 2 + 2))
((7 + 5) * 2 * (3 * 5 * 9)) + 7 * (7 * 5 + 9 * 9 * (5 * 9))
7 + 5 * (2 * 3 * 4 + 9 * 7 * 9) + (2 + 8 + (3 * 6) * 7 * 7 * (5 * 8 * 7 + 8 * 6 * 9)) * 5
9 * 3 * ((9 + 7) * 7 * (2 * 9 + 5 * 9 * 7 + 8) + 6 * 6 + 6) * (9 + 7 + 6 + 9 * 7)
8 + 9 * 4 * ((7 * 3 + 6 + 6 * 7 + 9) + 8 * 5 * 2)
3 * (3 * (5 + 5 + 5 * 2))
4 * 4 * 8 * 6 + (3 + (5 + 5 + 5 + 6 * 6) * 8 * 9 + 9) + 3
(3 + 8) + 4
6 + 5 + 3 + ((2 + 5 + 6) + (9 + 5 * 4 * 9) + 6 * 7 + 5)
(6 * 8 * (2 + 2 + 8 + 8 + 2) + 7 + 6 * 3) + ((7 * 3 * 9) + 2 * 4 * 4 + 2) + 5
6 * ((6 * 8 + 3 * 9) + 2 * 9) + 3 * (6 + (3 * 7 * 4) + 4 * (6 * 8 * 3 * 7 + 3 * 8) * 6 * 7) * 6
5 * 8 * (7 * 7 + 4 * 7) + (2 * 4 + (3 * 2 * 4 * 9) + 4 + 2)
(3 * 8) + 3 + 6 + (3 * 3 + 9 * 6 * 8) + 3 + 5
((6 + 5 + 7 + 3) * 7 + 9 * 5) + 9 + 2
3 + 2 * ((9 + 9) * 8 + 5 * (6 + 4 * 6) + 4 + 7) + 9 + 4 * 4
5 * 6 + (5 + 6 * 8 * 5 * (8 * 2 + 7) * (7 * 6 * 2 * 2 * 7 * 6))
8 + 4 + 3 + (4 * 7) * 2 * (2 + (3 + 8 + 8 * 2 * 9))
7 + 5 + 3 + ((9 * 9 + 2 * 8 * 6 + 5) * 2) + (3 * 7 + 6 * 4 * (8 * 6 + 8 + 8 + 7 * 3) + (9 + 3 * 8 * 6 + 4)) * (9 * 6 * 9 * 6)
5 + (2 + (6 * 3 * 3 + 9 * 8 * 8) + 3) + 9 * 6 + 6
6 + (2 + (3 * 5 + 2 + 4)) + 7 * 9 * (8 * 9 * 6)
((4 * 4) + 2 + 7 + (5 + 3 * 2 + 9 + 8 + 4) * 5) * (2 * (6 + 8 * 9 + 7) * 9 + (7 + 5 * 7) * 8) + 6 * 3 * 3
(7 * 5) * (5 + 3 + 5)
(2 * 6 * 9 + 9 + 6) + 9 * 8
6 + (9 + 6 + 7 * 7 * 3 + (9 + 8 + 2 * 3 + 4 + 7)) + 9 * ((2 * 5 + 4 * 6 * 6 * 7) + (6 + 5 * 4 * 5 * 8) + 9) + ((5 + 7) * 5 * 4)
(7 * 2 + 7 * 8 * (7 + 6)) * 2 * 2 * 2
(6 + 5 * 2 + 3 + 5) * 8 + 4 + 2
3 + 4 + 3 + 7 * ((2 * 8 * 8 * 3 + 4 + 4) * 8 * 2 * 9 + 4 + 9)
7 + (5 * (7 * 9 + 7 + 2 * 7) + 9 + 3 + 5 + (8 * 9))
8 * (2 * (8 + 4 * 3) + 7 * 7 + 5 + 8) + 3 + 6 * 8
(8 + 3 * 5) * 6 + 2
3 + 8 * ((3 * 8) + 8 + 5)
5 * 9 * 5 + ((5 + 6 + 7) + 4) + ((5 + 8 + 3 + 4 + 3) * 8 * 3)
7 * (6 + 4 + (7 + 4 + 4 + 6) * 3 * 3 + 2) + 7 + 8 + 4 + 3
2 + ((3 + 8) + 2 + 9 + 4 * 3)
4 + 9 * 3 + 9
(7 + (7 * 4 + 7) * (6 * 6 * 9 * 4) * (2 + 5 + 8 + 3)) * 3
(8 + 2 + 4 * 7 * 3) + 2 * ((6 + 2 + 2) + 7 * 8 * 8 * 5 * 8) + 7 + (5 + 8 + 2 * (9 * 9) + 3)
8 * 2 + 6 * ((5 * 3) * 6 * 2 * (7 * 2 + 4 * 4 + 9)) + 4
4 * 3 * (8 + 7 * (2 + 4 + 7 + 4 + 3)) * 9
7 + (6 + (6 + 2) + 8 + 9 + 3) * (3 + 9 * (3 + 5 + 6 + 7 + 6) + (8 * 8 * 7) + 5 + 8) * 9 * 2 * 8
3 + 6 * (3 * 5) * (9 + 4 * 3) + (5 * 6 + 3) * 6
6 + (5 * 6 * 7 * (2 * 4) * 9) * 7 * 7 * 6 * ((2 * 6 * 2 + 3) + 7 + 9 * 2 + 6 * 6)
(4 * 4 * 2) * (4 + 3)
7 * 8 * 9 * 6 * 2 + (8 * (8 + 6 + 6) + 3 + 5 + 2)
(9 + 2 + (8 * 9 * 5 + 7) + 3) * 9 * (7 + 8 + 3 * 4 + 5) + 8 * (5 * 5 + (4 + 5 + 5 * 3 + 8) * 4) + (7 + 3 + 7 + 4)
8 * (2 * 2 + (8 + 7 * 9 * 2) * (8 * 2 + 5 + 4) * 9 + 8) * 6 + 3 + (4 * 3) * 7
(5 + 7 + 9 * 6 + 4) * 9
(3 + (5 + 3 + 4) * 3) + 3 + 8 * ((5 * 8 * 6) + (8 + 6 * 4 * 4 + 8) * 8 + 2 * 4 + 7) + (2 * (5 * 5 * 3) * 2 * 9)
(8 + 2 * 8) + 9 * 8 + 7
4 * (2 * 3 + 8 + 3 * 5) * ((3 * 3 * 8 + 7) * (7 + 5 + 8) * 6) + (9 * 5) + 8
7 * (6 * 3) + (7 + 8 + (2 + 5) * 3) + 7 + 6
5 + 9 * 2
9 * 2 + 8 * (3 * (6 * 7 * 7) * 8) + 9
((2 + 8 + 7 + 6) + 4 * (6 * 5 + 7 * 4 + 5) * 8) * 9 + (7 + 2 * 5 * 5 * 3 * 3) + 3
6 + 3 * 3 + (8 + 4)
(8 + (8 * 2) + 4) * 5 * 4 + 5
(5 * 5 * 5 * 8 + 8 + 7) + (6 + 9) + 4 * 3 + 4
(3 + (2 * 9 + 2 + 9 + 4) + 2 + (5 + 3 + 2)) * 5 * 3 + 5
6 + 3 * ((8 + 7 * 8 * 7 + 9) + 3 + 3 + 9 * (7 + 5 + 9) * 9) + 5 + (7 * 8 + (5 * 7 + 5 * 9 + 4))
(4 * 9) + 7 * 9
(3 + 7) + 2 + (5 * 2 * 4 * 6 + 5)
5 * 4 * 2 * ((9 * 4 * 7) * 2 * 3) + 3 + 6
(5 + 2 * 7 * 7) * (4 * (3 * 8 * 2) * 3 * (2 + 3 * 8)) + 4 * 6 + 8 + 7
7 * 4 + 2 + (6 + 2 * 5 * 2 + 6 * 9) + 7 * 2
8 + (4 * 4 * 7 * 9 + 5 + 6)
(4 + 7 + 8 * 6) + (3 * 5 + 4) + 4
6 + 2 + 3 + 2 * 3 + 9
6 + ((7 * 6 + 5) + 4 + 9 + (5 + 6 * 6 + 5 * 2 * 9) * (2 * 9)) + 9 + 5 * 2
8 + 3 * 4 * 3 * (3 * 9 * 2)
9 * (7 * 7 * 4) + 3 + (9 + (6 + 6 + 2 + 3 + 5 + 6) * (3 * 7 * 9 * 3) * 6 + 8 * 3)
5 * (9 * 2 + (6 + 2 * 5) + 5)
4 + 3 + 9 + 7 + 5 + (3 * (2 + 8 * 6) * 4 + 2)
3 * ((2 + 5 + 2 + 6) + 3 + 4 + (7 + 9) * (7 + 8 * 4 + 9) * 3) + 9 + (8 + 6)
8 + 4 * 4 + 7 + ((3 * 9 * 2 + 2 * 8) + (3 + 6 + 2 * 5 * 4 * 8) * 8 * 8)
4 + 4 * ((5 + 3 + 2 * 4 + 7 * 8) * (5 * 6 + 9) + 5 * 3)
7 * 8
3 + (5 * 3 + (5 * 9) * 2 + 4) + 2 + 3
6 + 8 + 3 + (2 * (6 + 5 + 3 * 8 + 9) * 3 * 9) * (6 * 8)
2 * 9 * 4 * (6 * 2 * 6 * 3 * 8) * 4
6 + (3 * 4 * 7 + 5 * 5 + 2) * 4 + (6 * 5 * (6 + 2 + 9 + 6 * 8) * 2 + 5) + 4
6 * ((6 + 4) + 9 * 5 * 3 + (9 * 5)) * (4 + 2 * 7 * (4 * 9 * 3 * 8) * 4) + 3
7 * 2 + 6 * (3 * 6 + 6 * 5) * 7 * 7
3 + 8 * (3 * 2 + (9 * 3 + 8 * 7 + 8 + 4) + 6 + 3 + 5) + (6 + 8 + 7 * 3) * 9 * (4 * 3 * 6 + (9 + 9 * 9 * 2 * 6) + 4 + (6 * 4 + 5 + 9 + 9 + 7))
4 * 8 * (8 * 5 + 3 * 6 * 7 + 9) * 9
8 + 4 * 9 * 4 * 8
(3 * 7 + (5 * 2 + 7 + 5 * 6) + 9 * 5) * 6 + 6 + 2 * 5
(8 + (4 * 8 * 8) * 7) + 4 * 8 * ((4 * 4 * 5) + 8 + 8 + 2) + ((6 * 8) * 8 * 8 * 8 * 2) + 8
4 * (6 + 2 + 6 + 9 + 7) * 4 + 7 + 9
5 + (2 + 6 * 8 + 5) + (6 + (8 + 9 + 5) * 4 * 3) * 4 * 5
9 * 6 + 5 * (4 + 2 + (7 + 9 * 6)) + 5 + 6
8 + ((8 + 3 + 5 + 3 * 8) + 5 + 3) * 4 * 3
2 + (3 + 5 * (8 * 2) + 8 + 5) * 8 + 4 + (8 + (9 + 8) + 8 * 9 * 7) + 9
7 * (4 * 2 + 5) * 8
3 + 5 + 7 + (6 + 2 * 7 * 7 * 5) + ((3 * 4 + 8 * 5 + 6) + 4 * 5)
(9 + 6) * 7 * (9 + 3 + 4 * (8 + 8 * 3 + 6 + 8 * 2))
2 + (6 + 5 + (7 * 5 + 5 + 9 + 7 + 6) + 2 + 2 * (8 + 8))
4 * 9 + 2 * 9 + 9 + 8
((2 * 7 * 5) * 8) * 8 + 4 + 8 * 4
7 * 5 + (8 + 9) * 3 * 6
8 + ((9 + 7 + 8) + (8 * 5) + 2 + 7 + 3 + 3) + 3
6 * (5 * (7 + 6 + 5 * 9 + 8 * 5) * 6) + 7 * 9 * ((2 + 5 * 8 * 2 + 3) * 3 + 7 + 5 * 3) * 2
3 * (3 + 5 + 4) * 6 * 9
6 + ((8 * 5 + 3 + 9) * (5 + 2 * 4 * 5 + 5) + (2 * 3) + 4 + 7) + 7 + 8 * 6 + 4
((9 * 2 + 8 * 9) * 4 + 5 * 3 * (8 * 2 * 7)) + (7 + 4 * 2 + 6) * 9
(6 * 5 + 7 * (5 * 5 + 4 + 7 * 7 + 6) + 2) * ((4 + 6 * 5 * 6 + 7) + 9 + 5) * 7 * (4 + 7 * 6 + 5) * 5
8 * (3 * 6 + 5) + 9 * (9 + 6 * (4 * 6) + (7 + 8 + 5 + 3)) * (3 * 7 * 8 * 2) + 9
8 * 3 + (5 + 3) + 8 * 4 + (4 + (7 + 9 * 5 * 3) * 6 + (7 + 5 + 4) + 8 * 8)
2 * 3 + ((8 * 8 * 8 + 4) * 7 * 7) * 5 * 8
(6 * (7 + 3 + 8 * 5 + 2) + 2 * 4 + 5 * 5) * 2 * (8 + 3 + 3 + (6 + 4) * (9 * 3)) + 6 * 9
8 * (7 * 6 * 8 * (3 * 6 + 4 + 6 + 2 + 2) * 6) + 8 * 8 * 6
(7 * 5 * 5) * 7 * ((3 + 6 + 3 + 4 + 2 * 2) * 8 * (7 + 9 * 9 * 9))
((5 + 7 * 9 * 2 + 7) + 7 + 5 * 6 + 3) * 6 * 2 * 3
5 + (5 * (9 + 9) + (7 * 7 * 4 + 2) * 3)
((8 * 8 + 2 + 8 * 9) * 5) + (2 + (9 * 6 + 9 + 7) * 7)
3 + ((7 * 4 * 4 * 5) * (8 + 3 * 4 + 4 * 9) * 5 * 3 + 7) + 4 * 2 * 7 * (3 * 6 * 6)
((9 * 7 + 6 + 7 * 9 + 2) * 4 + 3 + 4 + 4 * 6) * 8 + (4 + (8 + 2 * 6 * 4 * 3)) + (5 + 2 * 6 * (4 * 5 + 4 + 2)) + 4 * (6 + 3 * (2 * 2 * 6 * 3) + 8 + 4 * 5)
(5 * (7 + 9 + 5) + 6) * 5 * (6 + 7 * 9 + 6) * 9 * 5 + 9
(4 * 4 * 6 * (5 * 8 + 3 + 8) + 5) + (9 * (3 * 9 + 3 * 9) + 5 + 8 + 2 * 3) * 3 * 2 + 8 * 5
7 + 5 * (3 + 8 + 6 * 9 + 5 * 8) * ((9 * 9 * 4 * 9 + 3) * (6 + 9 * 5) * 8 + 4 + 6)
7 + 8 * ((3 + 7 * 5) + 3 * 2 + 2 * 3 + 7) * 9 + 8 * 7
3 + 4 + (5 * (9 + 9 + 3 * 6 * 4 * 3) * 4) * (4 * (7 * 6 * 3 + 5 * 2 * 9) + (7 * 3 + 5))
3 * (2 + 8 + 2) * 6 * (4 * 4)
2 + 2 + 3 * 5 + (3 + (6 + 2) + 9 + 7) * (3 * 3 + 5 + 8 + 7)
4 + 5 + 6 * 6 * 6 + (3 * 2 * 3 * (2 * 6 + 9) + 6 + (5 + 2 + 9 * 6))
((4 + 9) + 2) * 7 + 3 * 4
2 + 6 * ((2 * 7 * 8 * 3 + 8 + 4) + 9 + 6 + 9 * 2 + 9) + 7 * 6
9 * 7 + ((2 + 5 * 2 * 7 * 8) + 6 * 2 + 3 + 4) * 5 * (5 + 2 * 7) * 8
4 * (8 + 5 * 6 * 8) + 2 + 3 * 7
(2 * 2) * 9 * 6 * 3 + 9
9 + 2 * (7 + 5 + 7 + (3 + 7 * 2 * 2 + 3) * 3)
(2 + 5 * 9) * (4 * (9 + 2 * 4 + 3 + 2) * 2 + 8 + (6 * 7 + 9 + 5)) * 3 + 8
(6 * (6 + 7 * 7) + 7 * 6 * 7) + ((7 * 6 * 4) * 6 * (8 + 8 + 5 * 7 * 8 + 8) + (4 + 5 * 5 + 5 + 3 * 9) + 8)
9 * (6 * 9 * (8 * 2 * 6) + 4 * 4)
(5 + 5 * 5 + 8) * 6 + 5 * 2
4 + ((8 + 7) + 5) + 6
9 + 6 * (7 + 4 + (9 + 4 + 2 + 8)) + (8 * 5)
(3 * 8 + (6 + 9 * 8 + 6)) + 3 + 4 * 8 + 5 * 3
3 + 6 * (7 * 8 * 6 * (5 + 8 + 6) + 5 * 4) * ((8 + 9 + 6 * 8) * 9 + 6 * 6 + 2 * 2) * 4
7 * (6 * (5 * 5 + 9 * 7 + 5 + 9) + 8 + 9 + 2 * (6 * 7 * 7)) * 3
4 + 2 * (5 * (3 * 8 * 3) * (5 + 9 + 8 * 9) + 9 + 7) * 7 + 5
6 * 5 * (5 * 3 * 9 * 4 * 2) * 9 + 7 * 4
3 * (4 * (7 + 2) + 4 + 6 + (3 + 6 + 6 * 5)) + 5
7 * 7 * (5 + 9 + 9) * (8 * 6 * 5 + 4 * 2)
6 + (9 * 4) * ((4 * 2 * 4 * 4 * 6 * 7) + 9 + (2 * 9 + 9 + 9)) + 2 + 4 + 4
9 * (6 * 5 + 9 * 2 * 4) + 7 + 8 * 8 + 9
(6 + 7 + 8 * 2 * 4) * 5 + 2 + 2 * 5 + 6
8 * 7 * (9 * 2 * 4 + 3 + 4 * 4) + (8 * 8 + 9 + 6) + ((7 * 7 + 2 * 9) * (2 * 8 + 2) * 6 * 6) + 8

1146
2020/input/2020/day4.txt Normal file

File diff suppressed because it is too large Load Diff

900
2020/input/2020/day5.txt Normal file
View File

@@ -0,0 +1,900 @@
BFFFFBBRRL
FBBBBBBRRL
BBBFFBBRRR
BFFFFFFLRL
FBFFBFBRRR
BFFBFFBLRR
FFBBBFBRRR
BBFBBBBLRL
FBFFBFFLRL
BFFFBBFLLL
FBFFFFFRLL
FBFFBFFRRL
BBBFBFBRRL
BFFBFFFLLL
FBFFFFFLLL
BFFFBBFLLR
FBBFFBFRRR
FFBBFBFLRR
FFFBBBFLRL
FFBFBBBRRL
FBFBBBBLLR
BBBFFFBLLR
FBBBFFFLLL
FFBFBFFRLR
FBFBBBFLLR
BBBFBBBRRR
FBBFFFBLRR
FBBFFFBLLR
BFBFFBBLLL
BBFFFFFRLR
BBFBBFFRRL
BBBBFBFRRR
BFFFFBFRRR
FBFFFFBLLR
FFBFBFBRLL
FBFFFFBLRL
BFFFFFFLLL
BFBBFBBLRR
FFFBBBBRRL
BBFFFFBLRL
FFFBBFBRLL
BBBBFFBRRR
FBBBBBFRLL
BFFBFBFRLL
FBFFBFFLLL
FBBBBBBRLL
FFFBBBFRRL
BBFFFFBRRR
FFBFBFFLLR
FBBFFFFRRR
BFFFFFBRRL
BBFFFBBRLR
BBBBFFFRLL
BFFFFBFRLR
BFBBBBFLRL
FFBFBFFRRR
BFBBFFBLRR
FFBBBBBRRR
FBBFBFFLRL
FFBBFBBLLR
BBFFBFBRRL
BFBFFBFLLL
BFFBBFBRRR
FBFBBBFLRR
FBBBBBBRLR
BFBBBFBRRL
FBFBFBBRLR
FBBBBFFLRR
BBFBBFBLLL
BFBBBBFLRR
FFBBBBBRLL
FFBFFBFRRR
BBFFBFBRRR
FBFBFFBRRL
FFBFFFFRLL
BFBFBFFLRL
FBFBFFBRLR
BFFFBFFLLL
BFBBFBFLRR
BFBBBBFRLR
FBFFFBFRRR
BFBFFBFLRR
BFFFFBBRLR
BBFFFBBRLL
FBBBFFFRRR
BFBFFFFLLR
FFFBBBBLLL
FBBFBFBLLR
FFBBFBFRLL
FBBBFBFLLL
BFFBFBBRRL
BFFFFFFRLR
BFFBBBFLRR
BFBFBBBLRL
BFBBFFFRLL
BBFFBFFLLL
BBFFBBBLRL
FBBBFFFRLL
FBFFFFBRRR
FFBBBBBLRL
FBBFFFBLLL
FBFFFFBLRR
BBFFBBFRRL
BFBFBFFRLL
FFBBFBBRLR
FFBBFFBLLR
FBBFBFFRLR
BBFFBFBLRL
BBFBFFFRLL
FBBFBBBLRR
FFBFFFBRRL
BBFFBBFLRR
BFFBFFBRRL
BFBFBFBRLR
BBBFFFBRLR
BBBFFFFLLR
FBFBBBFRLL
FBBFBFBRLL
FFBBFBFLLL
BFBBBFBLLR
BFBBBFBRLL
BBFBBFBLRR
BFBBBFFLRL
BFBBBBFLLR
BBBFFBFLRL
BFBFBBBLLR
BFFFBBFRRL
FBBBFBBLLL
BBFFFFBLLR
FBBBBBFLRR
BBFFBBFRLR
BFBFFBBRLL
BFFBBFFLRL
BFFBBFBRRL
BBBFFBFRRR
BBBFBBBLRL
BBFFBFBLLR
FFBFBFBLRR
FBBBFBBLRL
BFBBBFFRRL
FBFFBFBLLR
BFBFBBBRLL
FFFBBBFRLR
BBFBBBBLLR
FBBFBBBLLL
FFBBFBFLRL
BFFFBFFLLR
BFBFFFBRRL
BFFBFFFLRR
BFFFFFBLLR
FBBBBFFLLR
FFBFFBFRRL
BBBBFBFLLL
BBBFFFBLRL
FBFFFBBLLR
FFFBBFBRRL
BBFBFFBRRL
FFBBFBBRRR
BBBFFBBLRL
BBFFFBFRRR
FBBBBBFRRR
FFFBFBBRLR
FBBBFBFRLR
FBFBFBBRLL
BFBBBBFRRR
FFBBBBBLRR
BFBFBBBRRL
FBBFFBFLRL
FBFFBFBRLR
FBBBFBBRRR
FBFBFBBRRL
FBBBBBFRRL
FFBBFBFLLR
FBFFBBFRRR
BFBBBBBRRL
FFBFBFFLRR
BFFFFBBLRL
FFBBFFBRRR
BFFBBFFRLR
BFFFBBBRLR
BBFBFFFRRL
BBFBFBFRLR
BBFBBBFRRR
BFBFBFFLRR
FFBFBFBLLL
BFFFFFFRLL
FFBBFFFLLR
FBBBFFBRLL
BFBFFBFLLR
BFBBFBFLLL
FBFFFBFLLL
FBBFFBBLRL
BBFFFFBRRL
BBBFFBFRRL
FBFBFFBRRR
FBFBBFBRRR
BBFFBFBLLL
FFBBBFBRRL
BFFFBBBLLR
FBBBBBFLLL
BFFBFFFLRL
FBBFBBBRRR
BFFFFBFLLR
FBBBBBFLLR
FBBBFBFLLR
FFBBBFBRLR
BFBBBBBRLL
FFBFBBBRRR
BBBFBFFLRR
FFBFBFFRRL
BBFFBBBRLR
FBBBFBFLRR
FFBFFFFLLR
FBFFFBFLRR
BBBFBBFRRL
BBBFBFBLRR
BBFFFBBLLR
BBFFFFBRLR
FBBFFBBRLR
FFBFFFBLLR
BBFBFBFRRR
BBBFFFFRLL
BFBBFFFRRL
BFBBFBBLRL
BFFBBBFRLL
BBBFFBBRLL
FFBBFFFLRR
BFFFFFBRRR
FBFBBBFLRL
BBFFBBBRLL
BBFBFBBLLL
BFFBBBFLLR
BFFFBFBLRR
BBBBFBFRLL
BFBBBFBLLL
FBFBFBBLRR
BBFFBFFRLL
BFFFBBBLLL
BBBBFFFRRL
BFFBBBBLRR
BBFBBFBRRR
BBFBFFBLLR
BFFBBBFRRL
FBBFBFBRRR
BFFBFBFRRR
BBFFFBBRRL
FBFBFFFLLL
FBFBBFBLRR
FFBBFBBRLL
BBFFFFBLLL
BFFFFBFRLL
FBFFBBFLLR
BBBFFFBLLL
BBBFFBBLLR
FFBBBBFLRL
FBBFBFFRLL
BBFBFFBLRR
BBFFBFFRRR
FBFFBBBLLR
BFFBFBFLLL
BBFBBBFRLR
FFBBBBFLRR
FBFBBFBLRL
FFBBBFBLRR
FFFBFBBRRL
BBFFFBBLRR
BBFFBBBLLR
FBFBFFFRRL
FBBBBBBLRR
FFBBBBBRLR
FFBBFFBLLL
BFBBBBBRLR
BBFFFBBLLL
FBBBBFBRRR
BBFBFFFLLL
BBFBBFFRLL
BFFFFFBLRR
FBFBBFBLLR
FBFBBBFRRR
FFBFFBFLLL
BFFBFFBRLR
BFFBBBFRLR
FBFBBBBLLL
BBBFFFBRLL
FBBFFFFRLL
BFBFFBBLRR
FFFBBBFLLR
FFBBBFFLLL
BFBBFFBRRR
BBBFFBFLLL
FFFBBBFLLL
FBBFFFBRRL
FFFBBFBRLR
FBBBFBFRRL
FFBBBFBRLL
FBFFFFFRRR
BBFBFBBLLR
FBFFBBBRLL
BBFBBBBRRL
BFBFFBFRRL
FFFBBBBLRR
BFFFBFFLRL
FBFBFBBLLL
FFBFBFBLLR
FFBBBBFRRL
BBFFBFFRRL
FBFFBBFLRL
BFFBBFBLLR
BBBBFBBLLR
FBFBBBBRLL
FFFBBBBLRL
FBFFFFBLLL
BFFFFBFLRR
BBFBFFBLLL
FFBFBFBRLR
FBBBFFFLRR
FBFBFFFLRL
BBFBFBFLRL
FBBFFBFRLR
FBFFBBBLLL
BBFFFFFLLL
FBBBFFBRRR
FFBBBBFLLL
FBBFBFFLLR
BFBBFFFLLL
BFFBBBBRRL
BBFBBBFRRL
BBBFFBBRLR
BFBBFBBLLL
FBFBBFFRRL
FBBFFBBRLL
FBBFFBBLLL
BFBBFBFRRR
FBFFFFBRRL
FFBBBBBLLR
FBFFFFFRRL
BBBFBBFLRL
FBFBFBBLRL
BFFBFBBRLR
BFFBBFBRLL
BBBFBFFRRL
FBFFBFFRLR
BFFFBFBRLR
BBFFFBFRLL
BFBFFBBRLR
BFFFBFBLLL
FBFFBFFLLR
BFFFFBFLRL
FFBFBBFLRL
FBFFFFFLLR
BFFBBBFRRR
BBFFFFFRRL
FBFFFBBLRL
FFFBBBFRRR
FBFFBBFRLL
BBBBFFBRRL
FBBBBFBLLL
BBBBFBBLRL
BFFFBFBRRR
BFBBBBFRRL
FBBBBFBRLL
FFFBBFBRRR
BFBBBBBLRR
BFBFBFFRRL
BFBBFFBRLL
BBFFFBBRRR
FFBBBFFLRL
BFBBFFFRRR
FBFBFBFLLR
BFBFFFBLRR
BBBFFBFRLR
BFBBFFFRLR
FFBFBFBRRR
BBBBFBFRRL
BBFFBFBRLR
FBBFFFFLLR
BBFBBBBRLR
FFBBBBBRRL
BFFBFFBLLL
BBBFBBBRLL
FBBBBFFRLL
BFFBFBBLLR
BFFFBFBRLL
BFFFFBBLLR
BBBFBFFLLL
BBFFFFFRLL
BFBFBFBLLR
FBFBFBFLRL
BFBBFFBLRL
BBFBFBBRRL
FFFBFBBRLL
BFFFFBFRRL
BBBBFFFRLR
FBBBFFBRLR
FBFFBFBLRR
BFBFBFFRRR
FBFFFFBRLR
FBFBBBBRLR
FBBBFBBLRR
BBBBFFFLRR
BFBBFBFRLR
BFBFBBBLRR
BFBBFBBRRR
FBBFFBFRLL
BBBFBBFLLR
FBBFBBFLRR
FBBFFBBRRL
BBFBFBBRLR
FBFBBBBRRR
FFBBFFFRLL
BFBBBFFLLL
BFBFBFBRLL
BFFBFFBRRR
FBBBFFFLRL
FFFBBFFRRL
BBBFBFBLRL
BBBFBBBRLR
BBFFFFFRRR
BBFBBBFLRL
FFBBFFFLRL
BFFBBBBLLL
FBBBBBBLRL
BBBFBFFRLR
FBFFBFBLRL
BFBFFFFLRL
FFBFFFFLRR
BBBFFBBRRL
FFBBFBFRRR
FBBBFBFRLL
FFFBBFFLLR
BBFBBBFLRR
BBFFBFFRLR
BBBFFFBRRL
BFFFBBBRRL
BBFFBBBRRL
BBBFFFFRRR
BBBBFBBRLR
FFBBBBFRRR
BBBBFBFLRR
FFBFBBBRLL
BBBFBFFRLL
FBBBFBFLRL
BFFFBBBLRL
FBFFFBBRLR
BBFBBFBLLR
FBBBBFBLRR
BFBBFBFLLR
FFBFFBBLRL
FBFBFBFRRR
BBFBBFBLRL
BBFBBBFRLL
BFBFFFBRLL
BBBBFBFLRL
FBFBBFBRLR
BBFBFFBRLR
FBBFBFFLRR
BFFBFBBLRR
FBBBBFFRLR
FFBFFBBRRL
BBBBFFFRRR
BFFFFBBRRR
FBBFBFFLLL
FBFBBFFRLL
BFFFBFFRLR
BBBFFBBLRR
BBFFFBFRRL
FFFBBFFLRR
FBFBFFBLLR
FBBFFFBRRR
BFBFBBFLRR
BBBFFFFLRL
BBBFFBFLRR
BBFFBBFLRL
BBBFBBFLRR
BBBFBBFRLR
BBBFBFBRLR
FFFBBFFRLL
FFBBFBBLLL
BFBFFBFLRL
FBBFBBFLLR
BBFBFBBRLL
FBBBBFBLRL
BFFBBBBLRL
FBBFBFBRRL
FBFBFBFRRL
FFBFFBFLRR
FBFBFFFRLL
BFFFBFBLLR
BBFBFBBLRL
FFBFFBBRRR
BBFBBBFLLL
BFFBBBBRLL
BFBBBBFRLL
BFBBBFBLRR
BBBBFBFLLR
BFBFFFBLLL
FBBBBFFRRL
FFBBBFFRRL
FBFFBFFRLL
FFBBFBFRRL
FFBFBBFLRR
BBFBFBBRRR
BBBFFBFRLL
BBBFBFBRRR
FBFFBBFRRL
FBBBFFBLLR
BBFFBFFLRR
BFBFBFBLLL
BBBBFFFLRL
FFFBFBBLRL
FBBBBBBLLL
BFBFBFBLRL
BFFBFBBLRL
FBFBFBFRLR
FBFBBFFLRL
BBFFFBFLRL
FFBBBFBLLL
FBBFFBBLRR
FFBFFFFRRR
BFBFFBBLLR
FBFFBBBRRR
FFFBBBFLRR
BFBFFBFRLR
BFBBFFBLLR
FBFFFFBRLL
BFBBBBFLLL
FFBFBBFRLR
BFFBBFBLRL
BFBBFBBRLR
BBBFBFBRLL
BBBFFFFRLR
FFBFFFFRRL
FFFBBFFRRR
FBBBFBBLLR
FFBFBFFLRL
BFBFBBBRLR
FFBBFFFRLR
BFBBBFBRLR
BFBFFFBLLR
BFFFBBBRRR
FBFFFBFRLR
BBFBBBFLLR
BFBFBFBLRR
BFBBFFFLRL
BFFBFFFLLR
BBFBFBFLLL
FFBFFBBLLL
FBBBFBBRRL
FBFFFFFRLR
FBFBFFFLRR
BFBBBBBRRR
BFBFBBFRLL
FBBFBBBRLR
BFFBFFBRLL
FFFBBBBRLR
FBFBFFFRRR
FBBFBBFLRL
BFFBFFFRRL
FFFBBFFRLR
FBBBFBBRLR
BBFBFBBLRR
BBFBFFFLRL
FFBFFFBLRL
FFBBFBFRLR
BFBBFFFLRR
BBFBBBBRRR
BBBFBBBLLR
BBFBBFFRRR
BBFFBFBLRR
FBBFBFFRRR
BFFBBBBRLR
BBFBFBFLLR
FFBFBFFLLL
BFFBBBFLLL
FFBBFFBRRL
BFBBBFFRLR
FBFBFFBRLL
BFFFFFFRRL
BBBFBBFRRR
BFBBFFBLLL
FBBFFFBLRL
FBBBFFFRLR
FBBBBBFLRL
BFBBFFFLLR
BBFBFBFRLL
BFBFBFFLLL
FBBBBBBLLR
FFBFFFBLLL
BFFBBFFRRL
BFBFBBFLLL
BFFBFFBLRL
BFFFFFBRLR
BBFBFFFRLR
BFBFFBFRRR
FBFBBBFRRL
FFFBBFFLRL
BFFBBBFLRL
FBFFFFFLRL
BFFFFBBLLL
FFBBBFFLLR
FFFBFBBRRR
BFBFBFBRRR
FBBBFFBLRR
BFFBFFFRRR
BFBBFBBRLL
BBFFFFBLRR
FBFBBFBLLL
BFBBFFBRLR
BFFBFBFLLR
BFFBBBBRRR
FFBBBBFRLR
BFBBBFFRLL
BFBFBBFLRL
FFFBBFBLRL
BFFFBFFLRR
BFFFBBBRLL
BFFBFFBLLR
BFFFFBBLRR
FBBFFBBRRR
BFBFFFFRRR
BBBFFFFLLL
FFBBBBFLLR
BBBBFFBLRL
BBFFFBBLRL
BBBFBBBRRL
BFFBBFFLLL
FFBFBBFLLR
FFBFFBBLRR
FBBFFFFRRL
FBFFBBFLRR
FBBFBFBRLR
BFBBFBBLLR
FFBFBBFRLL
BFFBBFFRLL
BBBBFFFLLR
FFFBBFFLLL
BFBFBBFRRL
FBFBBFFLLL
FFBBBFFLRR
FBBFBFBLLL
FBFBFBFLRR
BBBFBFFLLR
FBFFFBFLRL
BBBBFFBRLR
BFBFBBFRLR
BFBBFBFRRL
BFBBBFFLLR
BBFBFBFLRR
BFFBFBBRRR
FBBFBBFRLL
FFBFFFBLRR
FBBBFFFRRL
BFFBFFFRLL
FBBFFFBRLL
FFBFBBBLRR
FFBFFFFRLR
BBBBFBBRLL
BFFBFBFRLR
FFBBBFBLLR
FBBBFFBLLL
BFBFBFBRRL
FFBFBBBLRL
FFBBBFBLRL
FBFBFFBLRR
FFBFFFFLLL
FBBFBBFLLL
FBFFFBBRRR
FBBFFFFLRL
FFBBBBFRLL
FBFFFBBRRL
BFFBFBFLRR
FBFFBFFLRR
BBBFBFBLLL
FFBFFBFRLL
FBFBBFFRLR
BFFBBFFLLR
FFBBFFFRRL
BBFFBBFRLL
BFFFFFBLRL
FBBFFBFRRL
FBBFBBFRRR
FFBFFBBRLR
BBFBFFFRRR
FFBFFFBRLL
FBFFFBBRLL
BBFBBFBRLR
FBFBBFFLRR
FBFBFBFRLL
BFBBBBBLLL
FBBBBFBRLR
BFFBBFBRLR
BBFFFBFLLL
FBFFFBBLRR
FFBBFFBRLR
FBBBFBBRLL
FBBBFFFLLR
BFBBBFBRRR
BBBBFFBRLL
BBFFFFFLRR
BBFBBFFLLL
FFBFBBFLLL
FFBBFBBLRL
BFFFBBFLRL
BFFBFBBRLL
BFBBFBFRLL
FBFBFBFLLL
FBFFBFBRLL
FFBFBBFRRL
FFFBBBBLLR
BBBBFBBLRR
BBFBBBBLRR
BFBBBBBLLR
FBFFBFFRRR
BBFBFFBRRR
BBFFBFBRLL
FBFFBBFLLL
FBFBBFFRRR
FBBFFBFLRR
BFFBFBFRRL
BFFFBFFRRL
BBBFBFBLLR
BFFFFFBRLL
BFBFFFFLLL
FFBBFFBLRL
FBBBBFBLLR
FBBFFFBRLR
BBFBFFBLRL
FBFFBBBRRL
BFFFBBFRRR
BFFFBFFRRR
FBBBBFFRRR
BFBFBBFLLR
BBFFFBFLLR
FBBFBBBLRL
FBBFBFBLRL
BBFFBFFLLR
FFBFBBFRRR
BBFBBFFRLR
BBBBFFFLLL
BBFBBFFLRL
FFFBBFBLLR
BFFFBFBRRL
FBBBBFBRRL
BBFFBBBLRR
BFBBBBBLRL
FBFFBBBLRR
BBFBBBBLLL
FFBFBBBLLR
FBFBFBBRRR
FBFFFBFLLR
FBFFFFFLRR
BBFBBFBRLL
FBFBBFBRLL
BFFBBFFLRR
FBBFFBFLLR
FBBBFBFRRR
BFFFBFBLRL
FBBFFBBLLR
BBFFBBBRRR
FBFFBBBRLR
FBFFFBBLLL
BFBFFBFRLL
BBFFBFFLRL
FBFFFBFRRL
FBBFFFFLRR
BBBBFFBLLL
FBBFFFFRLR
BFBBBFFRRR
FBBBFFBRRL
BBFBBFFLLR
BFBFBFFLLR
BBFFFFFLRL
BFBFBBBLLL
FFFBBBBRRR
BBBFFFBLRR
BFFFFFFRRR
BFBBBFBLRL
FBFFBBFRLR
BFBFFFBRRR
BBBFFFBRRR
FBBFFBFLLL
FBBFFFFLLL
BBFFBBFLLL
FFBFFFBRRR
BFBFFBBRRR
BBFBFFFLRR
FBFBBBFLLL
FFBBBFFRLR
BBFBBFBRRL
BBBFBBBLLL
FFBFFFFLRL
FBFBBBBLRR
FBFBBBBRRL
FBFBBBBLRL
FBFBFFFRLR
FBBFBBBRLL
BBFBBBBRLL
BFBFBBBRRR
FBFBBFFLLR
FFBFBFBLRL
FFBBFBBRRL
BBBFBBFRLL
FBBFBFBLRR
FFFBFBBLLR
BFBBBFFLRR
FFBFBBBLLL
BBBFFFFLRR
FFFBBFBLLL
FFBFFBFLRL
FBBFBFFRRL
FBFBFFBLRL
BBBFFBBLLL
FFFBBBFRLL
FFBFBBBRLR
BBBFBFFRRR
FBBFBBFRRL
BFFFBBFLRR
BFFFBBBLRR
FFBBFFFLLL
BBBFFFFRRL
BFFBFBFLRL
BBBFBFFLRL
BFBFFFFRLR
BBFFBBFLLR
BFBBFBFLRL
BFFFFFFLRR
FBFBBFBRRL
FFBFFBBRLL
BFBFFFFRRL
FBFBFBBLLR
BBFBFBFRRL
FBFBBBFRLR
BBBBFFBLLR
BBFBFFBRLL
FBBBBFFLRL
FFBFBFFRLL
BFBFFFFRLL
BBFFBBBLLL
FFBFFBFRLR
FFBBFFBLRR
BFBBFFBRRL
FBBBFFBLRL
FBBFBBFRLR
BFBFFFFLRR
BFBFBBFRRR
BBFBBFFLRR
FFBFFBBLLR
BBBBFFBLRR
FFBBFFBRLL
BBBBFBBLLL
BFFFFFBLLL
BBFBFFFLLR
BBBBFBFRLR
FFFBFBBLRR
BFBBFBBRRL
FBFBFFFLLR
BFFBBFBLRR
BFFFFBBRLL
BBFFFBFLRR
FFBFFBFLLR
BFBFFBBRRL
FBBBBFFLLL
BFBFBFFRLR
FBBBBBFRLR
FBFFBFBRRL
FBFFBFBLLL
FBBFBBBRRL
BFBFFFBRLR
BFBFFFBLRL
FBFFBBBLRL
BBBFBBBLRR
FFBBFBBLRR
FBBBBBBRRR
BFFFFFFLLR
BFFFBBFRLL
FBBFBBBLLR
FFBBBFFRRR
FBFFFBFRLL
BBFFFFBRLL
BFFBFFFRLR
FFFBBBBRLL
FFBFBFBRRL
FFBBBBBLLL
FBFBFFBLLL
BBFFFFFLLR
BFFBBFFRRR
BFFFBBFRLR
BFFBFBBLLL
FFBFFFBRLR
FFBBFFFRRR
BBFFFBFRLR
FFFBBFBLRR
BFFBBBBLLR
BFBFFBBLRL
BFFFFBFLLL
BBBFFBFLLR
FFBBBFFRLL
BFFBBFBLLL
BBBFBBFLLL
BBFFBBFRRR

2237
2020/input/2020/day6.txt Normal file

File diff suppressed because it is too large Load Diff

594
2020/input/2020/day7.txt Normal file
View File

@@ -0,0 +1,594 @@
wavy turquoise bags contain no other bags.
vibrant beige bags contain 4 drab lime bags, 1 muted violet bag, 5 drab plum bags, 5 shiny silver bags.
plaid green bags contain 2 pale olive bags, 1 dark chartreuse bag, 1 vibrant olive bag, 1 pale bronze bag.
plaid fuchsia bags contain 5 dull teal bags, 4 dark beige bags, 4 shiny teal bags, 5 vibrant orange bags.
vibrant coral bags contain 1 dotted blue bag.
drab tan bags contain 5 drab maroon bags, 5 bright silver bags, 2 dim tan bags.
light gray bags contain 3 dotted crimson bags, 3 dull chartreuse bags, 1 light maroon bag.
mirrored tomato bags contain 5 clear orange bags, 2 striped violet bags.
pale brown bags contain 1 faded fuchsia bag, 2 wavy orange bags, 1 mirrored coral bag, 5 dotted brown bags.
muted maroon bags contain 5 drab gold bags, 2 vibrant aqua bags, 5 bright crimson bags.
light purple bags contain 4 dim teal bags, 3 vibrant bronze bags, 2 dark chartreuse bags, 1 shiny green bag.
muted white bags contain 3 wavy lime bags, 5 muted lavender bags, 1 pale salmon bag, 1 dotted red bag.
plaid yellow bags contain 2 plaid gold bags, 2 faded lavender bags, 2 faded fuchsia bags, 3 faded gold bags.
plaid white bags contain 1 dull cyan bag, 4 pale cyan bags, 1 clear red bag, 5 vibrant orange bags.
wavy teal bags contain 5 wavy violet bags, 5 shiny silver bags.
pale crimson bags contain 1 wavy white bag, 5 clear tomato bags, 2 dark plum bags, 3 bright turquoise bags.
posh green bags contain 2 muted black bags, 3 light magenta bags.
striped maroon bags contain 1 bright green bag, 4 dark coral bags.
pale red bags contain 5 faded turquoise bags, 4 plaid crimson bags, 5 dark aqua bags.
vibrant chartreuse bags contain 2 pale red bags.
faded fuchsia bags contain no other bags.
pale olive bags contain 3 striped blue bags, 5 faded magenta bags, 3 light white bags.
striped tomato bags contain 4 faded plum bags.
shiny cyan bags contain 1 clear tomato bag, 4 clear magenta bags, 3 plaid teal bags, 5 dotted indigo bags.
plaid silver bags contain 3 dotted beige bags.
posh teal bags contain 3 faded black bags, 2 vibrant lavender bags, 5 light lavender bags, 5 faded lime bags.
clear gray bags contain 5 pale black bags, 2 dull salmon bags.
bright white bags contain 2 shiny olive bags, 5 dim brown bags, 1 dull crimson bag.
striped gold bags contain 3 mirrored yellow bags, 1 posh brown bag, 5 clear cyan bags, 3 striped tan bags.
light black bags contain 2 light lavender bags, 2 dotted bronze bags.
vibrant orange bags contain 3 posh plum bags, 5 light tan bags, 5 dim gold bags, 4 vibrant aqua bags.
dark chartreuse bags contain 3 striped purple bags, 2 dull beige bags, 5 wavy brown bags.
mirrored magenta bags contain 4 drab purple bags, 4 dotted brown bags, 2 light fuchsia bags.
striped magenta bags contain 1 drab gray bag, 1 wavy yellow bag, 5 drab plum bags.
dotted teal bags contain 4 pale indigo bags.
plaid red bags contain 4 clear fuchsia bags, 2 vibrant brown bags.
dotted green bags contain 2 striped teal bags, 3 muted bronze bags, 4 light red bags.
vibrant purple bags contain 2 drab plum bags, 4 dim beige bags, 4 drab aqua bags.
light indigo bags contain 1 dotted plum bag.
wavy green bags contain 1 shiny aqua bag, 2 dark lavender bags.
faded gray bags contain 2 plaid green bags.
dull purple bags contain 4 dull salmon bags, 1 plaid chartreuse bag, 1 dull tan bag, 4 pale green bags.
posh yellow bags contain 2 dim teal bags.
pale orange bags contain 4 mirrored red bags, 2 dotted chartreuse bags, 2 light yellow bags, 3 posh red bags.
dark tomato bags contain 1 light magenta bag, 4 light black bags, 2 vibrant aqua bags.
light cyan bags contain 1 shiny red bag, 2 plaid green bags, 4 clear cyan bags, 5 wavy tomato bags.
pale lavender bags contain 2 pale gray bags, 3 dotted violet bags, 2 striped lavender bags, 5 drab magenta bags.
dim coral bags contain 4 bright black bags, 1 shiny tan bag, 1 faded chartreuse bag, 1 bright silver bag.
muted purple bags contain 2 wavy yellow bags.
pale chartreuse bags contain 3 dotted red bags, 4 striped salmon bags, 4 pale brown bags, 2 dull yellow bags.
light red bags contain 3 bright crimson bags.
bright green bags contain 2 plaid fuchsia bags, 5 light lavender bags, 3 dotted cyan bags.
plaid purple bags contain 4 wavy tan bags, 5 plaid teal bags, 5 dull teal bags, 1 shiny gold bag.
vibrant gray bags contain 1 dull beige bag.
dotted orange bags contain 2 light green bags, 5 dotted brown bags, 4 pale blue bags.
dull black bags contain 5 pale silver bags, 4 pale lavender bags.
dull blue bags contain 1 striped turquoise bag, 2 dotted red bags, 5 dark white bags.
clear turquoise bags contain 3 dim beige bags, 5 faded brown bags.
pale magenta bags contain 1 dark violet bag, 1 dark yellow bag, 2 wavy aqua bags, 5 light silver bags.
bright teal bags contain 1 dark beige bag, 1 pale gold bag, 1 dim magenta bag.
pale plum bags contain 3 vibrant yellow bags, 1 dotted beige bag.
dull lime bags contain 1 faded coral bag, 4 plaid gold bags, 3 drab white bags.
vibrant olive bags contain 1 plaid teal bag, 1 faded tan bag.
muted magenta bags contain 5 clear gold bags.
dull olive bags contain 4 clear cyan bags, 1 dotted tan bag.
dim orange bags contain 3 drab lime bags, 1 drab plum bag, 2 vibrant tomato bags, 1 plaid blue bag.
wavy crimson bags contain 2 plaid gold bags, 3 light olive bags, 4 vibrant fuchsia bags.
clear tan bags contain 3 dotted beige bags, 2 dark purple bags.
plaid bronze bags contain 1 mirrored violet bag.
muted brown bags contain 4 dotted indigo bags, 5 dull crimson bags.
dull fuchsia bags contain 2 dotted gold bags, 2 striped violet bags, 1 clear lime bag, 3 shiny fuchsia bags.
mirrored gold bags contain 2 mirrored purple bags, 4 plaid aqua bags.
vibrant turquoise bags contain 1 light maroon bag, 3 dim teal bags, 1 dull brown bag.
shiny green bags contain 2 plaid orange bags.
dark crimson bags contain 1 striped purple bag, 4 vibrant salmon bags.
bright gray bags contain 4 plaid blue bags, 1 faded lime bag, 4 pale salmon bags, 3 bright bronze bags.
wavy salmon bags contain 1 wavy coral bag, 3 bright blue bags.
faded blue bags contain 3 muted fuchsia bags, 1 plaid lavender bag, 3 posh brown bags.
posh tomato bags contain 4 dim gold bags, 2 shiny gold bags.
striped yellow bags contain 3 vibrant turquoise bags, 3 dim salmon bags, 4 vibrant yellow bags, 2 faded beige bags.
light beige bags contain 5 striped purple bags, 3 muted gold bags.
wavy indigo bags contain 1 muted chartreuse bag, 2 wavy purple bags, 2 mirrored coral bags, 4 muted teal bags.
striped tan bags contain 4 light fuchsia bags, 2 dim chartreuse bags, 3 vibrant black bags, 1 muted black bag.
pale fuchsia bags contain 5 vibrant aqua bags, 5 drab purple bags, 5 shiny olive bags, 5 drab indigo bags.
pale cyan bags contain 5 dull teal bags.
dull chartreuse bags contain 5 wavy brown bags.
bright coral bags contain 3 clear orange bags, 3 shiny brown bags, 4 pale teal bags.
light magenta bags contain 3 light white bags, 1 clear indigo bag, 3 vibrant salmon bags, 3 dark crimson bags.
dull bronze bags contain 5 dotted gold bags, 4 dark olive bags, 3 vibrant magenta bags.
light lime bags contain 4 vibrant cyan bags.
muted aqua bags contain 3 dotted red bags, 2 wavy blue bags, 3 vibrant orange bags.
light violet bags contain 3 light green bags.
dotted red bags contain 1 muted teal bag, 4 striped tan bags, 3 wavy teal bags.
pale purple bags contain 4 dotted cyan bags, 1 dim magenta bag.
dim beige bags contain 5 dotted yellow bags, 4 faded magenta bags, 1 muted beige bag, 2 pale bronze bags.
light bronze bags contain 5 faded bronze bags, 2 drab bronze bags, 5 dark gold bags, 2 light purple bags.
wavy violet bags contain 5 light white bags, 3 light tan bags.
vibrant aqua bags contain 3 wavy turquoise bags, 4 dull beige bags.
pale bronze bags contain 5 light lavender bags, 4 dull beige bags, 3 bright crimson bags.
bright salmon bags contain 5 mirrored bronze bags, 5 dull orange bags, 2 shiny salmon bags.
muted blue bags contain 3 shiny yellow bags, 5 light yellow bags, 5 vibrant gold bags, 2 dotted coral bags.
dotted silver bags contain 1 plaid fuchsia bag, 5 light beige bags, 4 drab lime bags.
mirrored black bags contain 2 dull salmon bags.
bright black bags contain 4 faded magenta bags.
bright beige bags contain 2 mirrored salmon bags.
bright indigo bags contain 4 clear brown bags, 3 bright green bags.
mirrored lavender bags contain 3 shiny tan bags, 4 dark purple bags, 2 striped tan bags.
light aqua bags contain 2 light magenta bags, 5 vibrant tan bags, 5 drab plum bags, 1 plaid tomato bag.
mirrored maroon bags contain 4 vibrant tomato bags.
posh turquoise bags contain 1 striped white bag, 3 dim lavender bags, 3 posh teal bags, 2 mirrored salmon bags.
shiny gray bags contain 1 vibrant beige bag, 3 light tan bags, 4 wavy teal bags.
wavy black bags contain 4 dark tomato bags, 3 dim gold bags, 4 dark beige bags.
drab silver bags contain 2 light green bags, 3 light gold bags, 4 drab plum bags, 1 dotted yellow bag.
pale violet bags contain 1 dull beige bag, 2 shiny teal bags, 1 light lavender bag, 3 mirrored red bags.
dark blue bags contain 1 dotted indigo bag, 1 clear tomato bag.
dull teal bags contain 5 vibrant salmon bags, 3 vibrant aqua bags, 5 wavy tan bags, 5 striped purple bags.
faded tomato bags contain 2 shiny chartreuse bags, 4 clear orange bags, 5 bright orange bags.
mirrored red bags contain 5 muted beige bags, 2 faded white bags.
mirrored lime bags contain 4 posh crimson bags, 5 pale turquoise bags, 3 wavy blue bags.
mirrored crimson bags contain 1 faded white bag, 2 dark crimson bags, 3 striped cyan bags.
light teal bags contain 3 clear indigo bags, 1 wavy tan bag, 4 dim gold bags.
wavy chartreuse bags contain 5 wavy plum bags, 2 shiny salmon bags, 3 clear olive bags.
shiny black bags contain 2 drab aqua bags, 4 dull brown bags, 5 wavy silver bags, 1 vibrant brown bag.
bright violet bags contain 2 striped magenta bags, 4 vibrant gray bags.
muted tomato bags contain 1 drab turquoise bag.
muted teal bags contain 3 dotted blue bags.
dim cyan bags contain 3 dotted blue bags, 1 vibrant coral bag.
striped fuchsia bags contain 1 shiny gold bag, 5 dark beige bags, 5 mirrored indigo bags.
clear bronze bags contain 3 striped orange bags, 2 vibrant tomato bags.
vibrant lavender bags contain 2 muted beige bags, 4 shiny teal bags, 4 dull beige bags.
light olive bags contain 5 shiny yellow bags, 1 vibrant cyan bag.
shiny fuchsia bags contain 4 dim brown bags, 2 dull chartreuse bags.
plaid turquoise bags contain 3 bright green bags, 4 light fuchsia bags, 2 light lavender bags.
shiny brown bags contain 5 mirrored plum bags.
pale white bags contain 4 dull magenta bags, 1 posh purple bag, 4 pale olive bags, 4 wavy olive bags.
pale yellow bags contain 1 bright blue bag.
dark salmon bags contain 3 wavy turquoise bags, 1 dotted plum bag, 3 faded white bags, 5 dim tan bags.
shiny crimson bags contain 5 faded coral bags.
pale green bags contain 2 posh beige bags, 5 dark silver bags.
dim gray bags contain 4 dull cyan bags, 2 muted salmon bags, 4 mirrored tan bags, 1 bright violet bag.
dim blue bags contain 4 light orange bags, 4 wavy beige bags.
mirrored cyan bags contain 3 pale cyan bags.
dark aqua bags contain 2 striped blue bags, 5 light white bags, 4 drab gray bags.
wavy tan bags contain no other bags.
light tan bags contain 1 clear aqua bag.
light silver bags contain 1 light green bag, 2 pale bronze bags, 1 bright crimson bag, 1 vibrant aqua bag.
plaid tan bags contain 5 posh silver bags, 1 shiny beige bag.
shiny white bags contain 1 pale olive bag.
dotted brown bags contain 1 bright silver bag, 5 light tan bags, 4 light coral bags.
shiny bronze bags contain 2 vibrant plum bags, 2 wavy teal bags, 1 bright red bag, 5 clear tomato bags.
striped violet bags contain 5 vibrant gray bags, 3 dark maroon bags, 4 dotted fuchsia bags, 4 plaid purple bags.
dull plum bags contain 4 dark gray bags, 1 wavy aqua bag, 2 muted aqua bags, 5 striped crimson bags.
posh blue bags contain 1 dotted bronze bag, 5 muted indigo bags, 2 light tan bags.
posh tan bags contain 4 shiny gold bags, 3 drab maroon bags.
striped aqua bags contain 4 muted bronze bags, 5 bright blue bags, 1 wavy tan bag.
shiny silver bags contain 1 light green bag.
dark white bags contain 4 drab purple bags.
dull green bags contain 5 wavy bronze bags, 5 faded white bags.
clear chartreuse bags contain 3 dark gray bags.
posh coral bags contain 2 shiny lime bags, 4 light blue bags, 3 muted bronze bags.
faded magenta bags contain 1 dull maroon bag, 4 shiny teal bags, 1 plaid teal bag.
drab brown bags contain 1 drab violet bag.
pale salmon bags contain 4 plaid gray bags, 2 wavy violet bags.
mirrored aqua bags contain 1 faded turquoise bag, 5 dull aqua bags.
striped gray bags contain 5 dark maroon bags, 3 shiny plum bags.
mirrored salmon bags contain 4 clear cyan bags, 2 vibrant olive bags, 2 striped silver bags, 3 muted lavender bags.
wavy purple bags contain 1 shiny beige bag.
plaid indigo bags contain 1 plaid plum bag.
plaid gray bags contain 5 pale blue bags, 3 shiny gold bags.
bright yellow bags contain 2 drab bronze bags, 3 drab teal bags.
drab red bags contain 4 drab indigo bags, 1 mirrored blue bag, 2 dull aqua bags, 4 light magenta bags.
dull white bags contain 2 muted black bags, 1 dim beige bag, 1 dark beige bag.
clear silver bags contain 5 muted bronze bags, 1 muted tan bag, 3 light aqua bags, 1 wavy fuchsia bag.
dark black bags contain 2 pale fuchsia bags, 5 pale brown bags, 5 drab black bags.
mirrored silver bags contain 4 drab plum bags, 3 shiny white bags, 5 muted crimson bags, 5 dull aqua bags.
dim tomato bags contain 3 drab red bags, 1 drab lime bag, 4 striped gray bags.
faded bronze bags contain 5 clear indigo bags, 2 dotted blue bags.
striped crimson bags contain 1 plaid tomato bag, 2 dull yellow bags, 3 plaid purple bags.
wavy olive bags contain 4 mirrored red bags, 4 drab indigo bags.
dotted turquoise bags contain 2 mirrored lavender bags, 4 light maroon bags, 2 pale teal bags, 1 mirrored crimson bag.
muted violet bags contain 5 shiny olive bags.
bright orange bags contain 4 pale tan bags, 1 striped fuchsia bag, 5 shiny olive bags.
striped turquoise bags contain 1 posh salmon bag, 5 shiny indigo bags, 4 wavy violet bags.
dull indigo bags contain 3 plaid plum bags, 4 faded plum bags, 3 dull violet bags.
posh black bags contain 4 clear brown bags, 4 vibrant cyan bags, 1 light white bag.
shiny orange bags contain 5 striped purple bags, 3 muted beige bags.
striped plum bags contain 5 dull salmon bags, 3 dull orange bags, 1 clear lime bag, 3 mirrored indigo bags.
clear white bags contain 4 wavy crimson bags, 3 plaid magenta bags.
pale tan bags contain 5 muted indigo bags.
dark red bags contain 3 bright magenta bags, 1 muted salmon bag, 4 vibrant gray bags, 5 clear green bags.
dark yellow bags contain 3 dim teal bags.
clear aqua bags contain no other bags.
vibrant white bags contain 2 drab yellow bags, 4 vibrant aqua bags, 2 plaid maroon bags.
posh lime bags contain 5 vibrant black bags.
clear teal bags contain 1 shiny olive bag, 5 bright aqua bags, 4 bright violet bags.
dotted indigo bags contain 2 muted fuchsia bags, 3 mirrored gray bags.
posh olive bags contain 5 clear maroon bags, 2 dim teal bags, 2 drab plum bags, 4 shiny olive bags.
dark coral bags contain 4 clear red bags.
dark olive bags contain 4 vibrant black bags.
faded olive bags contain 2 bright gray bags, 5 dull white bags.
dotted purple bags contain 1 faded brown bag, 5 dark purple bags.
faded plum bags contain 2 pale brown bags, 4 dark aqua bags.
bright plum bags contain 2 vibrant brown bags, 1 bright black bag, 1 dotted gold bag.
faded lavender bags contain 4 clear violet bags, 4 striped purple bags.
faded silver bags contain 4 dotted blue bags, 2 light purple bags, 1 bright chartreuse bag, 3 striped white bags.
bright cyan bags contain 5 dotted lime bags, 5 shiny gray bags, 1 faded orange bag, 5 clear indigo bags.
plaid tomato bags contain 1 clear violet bag, 3 muted beige bags.
wavy aqua bags contain 1 light tan bag.
dotted gold bags contain 5 mirrored indigo bags, 5 dull tan bags.
faded teal bags contain 5 plaid black bags, 2 clear turquoise bags.
striped white bags contain 2 dull aqua bags, 1 mirrored violet bag, 4 vibrant salmon bags.
mirrored violet bags contain 2 vibrant salmon bags, 1 clear brown bag.
drab magenta bags contain 3 muted lime bags, 2 bright orange bags.
pale teal bags contain 3 light black bags, 4 dim black bags, 2 muted gray bags.
dark teal bags contain 5 dark tomato bags, 4 dull teal bags, 5 striped white bags, 5 plaid aqua bags.
dim purple bags contain 5 wavy magenta bags, 2 muted fuchsia bags, 5 mirrored bronze bags.
clear violet bags contain 5 wavy turquoise bags, 5 light black bags, 1 mirrored indigo bag, 2 faded white bags.
dim indigo bags contain 3 dull teal bags.
dotted olive bags contain 4 dark red bags, 2 mirrored beige bags.
posh aqua bags contain 1 posh blue bag, 4 dotted black bags, 4 pale tomato bags.
clear orange bags contain 1 striped magenta bag, 3 wavy aqua bags.
plaid cyan bags contain 5 vibrant lavender bags, 2 light gold bags, 2 wavy orange bags, 4 bright turquoise bags.
mirrored green bags contain 4 plaid fuchsia bags.
dark silver bags contain 3 light coral bags.
wavy silver bags contain 5 plaid yellow bags, 5 pale orange bags.
plaid crimson bags contain 4 vibrant salmon bags, 4 vibrant blue bags, 1 light teal bag, 3 bright crimson bags.
mirrored bronze bags contain 1 dark coral bag, 2 clear orange bags, 4 plaid orange bags, 2 vibrant gray bags.
faded aqua bags contain 5 light white bags, 3 drab gray bags, 1 plaid beige bag.
drab yellow bags contain 1 dotted black bag, 2 dim silver bags.
dark beige bags contain 4 wavy tan bags, 5 light lavender bags, 5 dotted bronze bags.
clear green bags contain 5 shiny purple bags, 5 light teal bags, 5 pale bronze bags.
dotted lavender bags contain 4 wavy orange bags, 4 dull chartreuse bags.
bright chartreuse bags contain 2 dotted cyan bags, 3 pale olive bags, 4 vibrant salmon bags.
faded red bags contain 3 dull cyan bags, 3 drab indigo bags, 5 light green bags, 4 dark lime bags.
plaid brown bags contain 2 dotted salmon bags, 3 striped silver bags, 1 light blue bag.
dull beige bags contain no other bags.
dim violet bags contain 3 striped lavender bags, 5 dotted coral bags, 1 clear blue bag.
vibrant red bags contain 1 dark coral bag, 3 light gold bags.
faded violet bags contain 3 pale gold bags.
muted salmon bags contain 3 wavy turquoise bags.
vibrant gold bags contain 2 shiny teal bags.
dull coral bags contain 3 posh gold bags, 4 wavy olive bags.
mirrored fuchsia bags contain 5 wavy lime bags.
dotted plum bags contain 3 bright bronze bags, 3 light coral bags, 5 mirrored orange bags, 4 plaid gray bags.
dim fuchsia bags contain 4 light indigo bags, 5 faded red bags, 5 plaid orange bags.
dull brown bags contain 2 dim gold bags.
faded indigo bags contain 3 wavy olive bags, 1 shiny green bag.
pale coral bags contain 5 faded crimson bags.
light orange bags contain 3 bright gold bags, 1 striped magenta bag, 4 plaid lavender bags, 5 light green bags.
clear salmon bags contain 3 dim tan bags, 1 light lavender bag.
vibrant indigo bags contain 1 dark beige bag, 2 posh purple bags.
clear cyan bags contain 5 posh brown bags.
dull red bags contain 3 drab gold bags, 3 dark aqua bags, 5 dim maroon bags.
dim red bags contain 5 faded black bags, 2 shiny lime bags.
dark indigo bags contain 5 dull green bags, 2 striped white bags, 3 dotted indigo bags.
pale tomato bags contain 4 vibrant gold bags.
dim turquoise bags contain 4 plaid tomato bags, 2 plaid gray bags, 4 shiny violet bags.
dotted yellow bags contain 5 dotted plum bags, 3 muted beige bags, 4 light fuchsia bags, 1 wavy olive bag.
dim gold bags contain 3 muted beige bags.
mirrored orange bags contain 5 drab maroon bags, 4 dull teal bags, 1 faded tan bag, 2 dark aqua bags.
light chartreuse bags contain 4 vibrant gold bags, 5 dark silver bags, 3 pale purple bags.
posh silver bags contain 5 dotted silver bags, 4 dark chartreuse bags, 1 striped magenta bag.
vibrant black bags contain 5 muted red bags, 1 pale purple bag, 2 clear indigo bags, 4 faded magenta bags.
faded maroon bags contain 2 clear cyan bags, 4 wavy orange bags, 2 shiny blue bags.
bright lavender bags contain 5 dull chartreuse bags.
drab black bags contain 1 posh plum bag, 5 mirrored maroon bags, 3 dark yellow bags.
drab gray bags contain 4 clear violet bags, 3 mirrored red bags, 1 light silver bag, 1 wavy turquoise bag.
faded turquoise bags contain 2 light tan bags, 5 faded coral bags.
dark purple bags contain 5 pale cyan bags.
muted beige bags contain no other bags.
dull maroon bags contain 2 wavy turquoise bags, 5 light lavender bags, 5 muted beige bags.
bright tomato bags contain 3 plaid blue bags.
dim crimson bags contain 3 drab turquoise bags, 2 faded crimson bags, 2 plaid chartreuse bags.
clear magenta bags contain 3 light green bags, 5 dotted red bags, 1 mirrored indigo bag, 1 dim brown bag.
dotted aqua bags contain 5 clear crimson bags, 1 wavy orange bag.
dark fuchsia bags contain 1 dull maroon bag.
faded salmon bags contain 2 wavy yellow bags, 3 faded plum bags.
muted chartreuse bags contain 5 light gold bags, 1 bright bronze bag, 5 light beige bags, 4 light black bags.
muted lavender bags contain 3 mirrored coral bags.
drab fuchsia bags contain 3 plaid brown bags.
dim plum bags contain 4 vibrant brown bags, 3 plaid beige bags, 3 dark crimson bags, 4 bright teal bags.
shiny magenta bags contain 1 muted black bag.
wavy magenta bags contain 2 faded lavender bags, 1 bright gray bag, 3 pale olive bags.
mirrored plum bags contain 5 muted maroon bags.
wavy plum bags contain 5 dark crimson bags.
striped lavender bags contain 4 vibrant yellow bags, 2 vibrant lavender bags.
faded beige bags contain 4 pale indigo bags, 5 vibrant tomato bags.
shiny gold bags contain 4 drab gray bags, 4 light coral bags.
dotted beige bags contain 5 drab maroon bags, 1 shiny gold bag, 3 light lavender bags.
dull yellow bags contain 3 pale bronze bags, 1 bright silver bag.
muted green bags contain 3 faded red bags, 2 plaid green bags, 3 plaid black bags, 1 light yellow bag.
vibrant silver bags contain 5 striped purple bags, 3 shiny olive bags, 4 vibrant lavender bags.
dim green bags contain 4 vibrant gold bags, 5 muted maroon bags, 1 plaid aqua bag, 2 posh silver bags.
faded lime bags contain 2 shiny white bags.
bright bronze bags contain 5 muted gold bags, 3 light black bags.
shiny yellow bags contain 5 light green bags, 5 wavy brown bags.
dark cyan bags contain 5 light teal bags, 1 posh yellow bag, 3 shiny aqua bags.
striped blue bags contain 1 muted gold bag, 4 dull maroon bags, 3 clear red bags, 5 faded fuchsia bags.
dim tan bags contain 1 bright tan bag.
shiny red bags contain 3 plaid turquoise bags, 1 dotted cyan bag, 1 pale fuchsia bag.
vibrant brown bags contain 5 dim magenta bags, 4 drab white bags.
dull turquoise bags contain 2 bright orange bags, 4 bright gray bags, 3 dim chartreuse bags.
dark bronze bags contain 3 striped green bags, 2 wavy tan bags, 2 faded lime bags, 3 bright olive bags.
striped green bags contain 4 light black bags, 2 drab bronze bags, 4 dotted bronze bags, 3 plaid orange bags.
dark brown bags contain 5 drab indigo bags, 3 plaid white bags, 1 pale lime bag.
dotted black bags contain 4 dull beige bags, 4 drab lavender bags.
striped cyan bags contain 2 vibrant orange bags, 3 clear violet bags, 2 mirrored gray bags.
clear tomato bags contain 5 shiny gold bags, 1 dim chartreuse bag, 4 dark crimson bags, 5 shiny white bags.
light white bags contain 3 pale violet bags, 4 drab plum bags, 4 drab gray bags, 1 vibrant lavender bag.
plaid black bags contain 4 vibrant orange bags, 5 bright gray bags.
drab salmon bags contain 4 faded coral bags.
shiny maroon bags contain 3 pale black bags, 2 bright magenta bags.
striped black bags contain 1 plaid fuchsia bag, 4 plaid black bags, 1 mirrored beige bag.
muted bronze bags contain 5 faded red bags, 5 plaid green bags.
bright tan bags contain 1 wavy yellow bag, 5 light fuchsia bags, 5 plaid teal bags.
plaid gold bags contain 5 faded black bags, 1 vibrant black bag.
wavy tomato bags contain 5 plaid fuchsia bags, 2 mirrored violet bags, 3 dark yellow bags, 1 bright gold bag.
faded tan bags contain 5 vibrant salmon bags, 5 plaid teal bags, 4 clear aqua bags, 2 pale violet bags.
light crimson bags contain 3 mirrored tomato bags, 5 plaid green bags.
wavy bronze bags contain 1 light teal bag.
faded yellow bags contain 3 clear beige bags, 4 bright bronze bags.
muted gold bags contain 5 plaid teal bags, 2 faded fuchsia bags, 4 bright crimson bags.
shiny tan bags contain 5 dark salmon bags, 5 light red bags.
bright gold bags contain 2 faded chartreuse bags, 2 dim green bags, 3 striped cyan bags.
pale turquoise bags contain 1 pale tan bag, 5 dark violet bags.
wavy orange bags contain 5 plaid teal bags, 1 pale bronze bag, 4 wavy tan bags, 1 clear red bag.
dim silver bags contain 3 dark lime bags, 1 dotted beige bag.
faded cyan bags contain 2 dull maroon bags, 5 clear tan bags, 1 dull coral bag, 2 posh lavender bags.
dim white bags contain 1 dull maroon bag, 3 dull brown bags.
vibrant bronze bags contain 5 faded chartreuse bags.
dotted fuchsia bags contain 4 vibrant salmon bags, 2 faded white bags.
faded gold bags contain 2 dark maroon bags, 2 bright chartreuse bags, 1 dull brown bag.
dim brown bags contain 3 dull yellow bags, 4 faded chartreuse bags, 5 vibrant silver bags.
light yellow bags contain 2 striped silver bags.
striped coral bags contain 1 muted blue bag, 1 dim aqua bag, 4 posh red bags, 5 plaid lime bags.
dark magenta bags contain 2 pale violet bags, 2 vibrant tomato bags, 5 clear orange bags.
posh indigo bags contain 2 clear red bags, 4 clear violet bags, 2 shiny chartreuse bags, 5 dull white bags.
light tomato bags contain 4 clear indigo bags.
light plum bags contain 2 mirrored maroon bags.
drab violet bags contain 5 dark aqua bags, 1 vibrant magenta bag.
pale gray bags contain 1 striped lime bag, 4 clear bronze bags.
dark plum bags contain 2 dark olive bags.
plaid lavender bags contain 4 pale brown bags.
mirrored olive bags contain 1 faded coral bag.
drab green bags contain 2 dull silver bags, 2 clear purple bags, 3 posh violet bags, 2 light blue bags.
bright maroon bags contain 4 faded yellow bags, 4 dotted bronze bags, 2 dark brown bags.
striped purple bags contain 2 faded fuchsia bags, 5 posh plum bags.
wavy gray bags contain 4 dark violet bags, 4 plaid orange bags.
drab plum bags contain 3 light lavender bags, 1 striped blue bag, 5 bright crimson bags.
faded orange bags contain 4 light teal bags, 4 dim chartreuse bags, 2 vibrant yellow bags.
dim salmon bags contain 2 pale coral bags, 1 drab aqua bag.
muted silver bags contain 1 clear chartreuse bag, 2 clear tan bags, 5 dotted tan bags, 4 clear black bags.
muted yellow bags contain 3 wavy blue bags, 1 striped lavender bag.
wavy gold bags contain 5 faded gold bags, 1 shiny green bag, 1 mirrored cyan bag.
dull gold bags contain 1 striped green bag.
bright brown bags contain 4 drab plum bags, 4 pale violet bags, 5 vibrant blue bags.
bright crimson bags contain 2 wavy tan bags, 4 shiny teal bags.
mirrored gray bags contain 2 dull beige bags, 4 light white bags, 5 pale brown bags.
dull tan bags contain 4 dim magenta bags, 1 light teal bag.
mirrored yellow bags contain 1 drab lavender bag, 4 shiny gold bags, 3 drab turquoise bags, 2 light silver bags.
muted indigo bags contain 5 mirrored coral bags, 3 dark crimson bags.
dull aqua bags contain 4 drab lime bags, 3 shiny crimson bags, 1 drab salmon bag.
dim aqua bags contain 2 shiny lavender bags, 5 pale coral bags.
shiny chartreuse bags contain 1 clear maroon bag, 4 shiny blue bags.
dotted magenta bags contain 3 light olive bags.
faded green bags contain 4 faded beige bags, 5 dotted gold bags, 5 striped lavender bags, 5 wavy blue bags.
drab orange bags contain 3 muted fuchsia bags.
dim magenta bags contain 1 shiny orange bag.
shiny olive bags contain 2 wavy aqua bags.
dark orange bags contain 1 clear black bag, 1 faded gray bag.
light lavender bags contain no other bags.
bright turquoise bags contain 2 dull beige bags, 5 shiny teal bags, 5 posh brown bags, 5 dark beige bags.
faded purple bags contain 2 dark white bags, 2 pale salmon bags.
drab olive bags contain 1 dark silver bag, 4 plaid yellow bags, 3 drab gold bags, 2 mirrored yellow bags.
dull gray bags contain 3 vibrant turquoise bags, 5 faded chartreuse bags.
striped bronze bags contain 3 faded turquoise bags, 2 vibrant gray bags, 3 dotted beige bags, 3 dull beige bags.
wavy fuchsia bags contain 2 shiny purple bags, 2 plaid crimson bags, 1 dark cyan bag.
pale aqua bags contain 4 dotted tan bags, 1 dim yellow bag, 5 shiny lime bags.
pale silver bags contain 2 shiny brown bags.
shiny aqua bags contain 1 pale salmon bag, 5 faded chartreuse bags, 1 plaid aqua bag, 4 shiny silver bags.
posh brown bags contain 5 vibrant orange bags, 4 bright silver bags, 5 wavy orange bags, 3 dim chartreuse bags.
striped lime bags contain 5 drab violet bags, 4 light turquoise bags, 2 bright turquoise bags.
muted tan bags contain 2 striped purple bags, 4 posh yellow bags.
drab purple bags contain 2 clear red bags.
plaid magenta bags contain 2 pale blue bags, 5 plaid crimson bags.
mirrored tan bags contain 3 pale purple bags.
light blue bags contain 4 light tan bags.
clear black bags contain 2 pale blue bags, 4 dim gold bags, 2 vibrant gold bags.
light gold bags contain 1 wavy turquoise bag, 3 drab plum bags, 1 clear violet bag.
bright olive bags contain 3 light lavender bags, 1 faded tan bag, 3 shiny gold bags, 1 dotted cyan bag.
dark maroon bags contain 4 muted gold bags, 2 shiny yellow bags.
wavy lime bags contain 3 plaid green bags, 5 mirrored silver bags, 4 mirrored green bags, 3 dotted beige bags.
drab white bags contain 3 clear red bags, 3 bright silver bags, 4 posh red bags, 2 shiny blue bags.
clear lime bags contain 4 dotted orange bags.
vibrant maroon bags contain 2 dull orange bags, 5 vibrant crimson bags.
pale black bags contain 1 pale cyan bag, 5 dim tan bags, 4 shiny purple bags, 4 faded fuchsia bags.
vibrant tomato bags contain 2 mirrored orange bags.
dotted gray bags contain 3 dotted purple bags.
drab gold bags contain 4 shiny gold bags.
mirrored teal bags contain 3 shiny magenta bags, 3 mirrored beige bags, 3 dotted silver bags, 5 mirrored indigo bags.
posh lavender bags contain 2 wavy teal bags, 4 striped violet bags, 1 vibrant gold bag.
dark lavender bags contain 3 light blue bags, 2 muted beige bags, 3 clear magenta bags, 1 light tan bag.
muted cyan bags contain 4 dull gold bags, 1 dim yellow bag, 4 striped cyan bags, 2 dim gold bags.
dim maroon bags contain 5 shiny purple bags.
shiny purple bags contain 5 pale violet bags, 2 light fuchsia bags, 2 mirrored red bags.
vibrant lime bags contain 4 bright orange bags, 1 posh beige bag.
vibrant teal bags contain 2 posh turquoise bags, 3 pale tomato bags, 3 dark bronze bags.
posh fuchsia bags contain 3 striped plum bags, 2 drab aqua bags.
dotted violet bags contain 5 plaid black bags, 1 clear salmon bag, 2 dull chartreuse bags.
clear gold bags contain 2 dull violet bags, 3 muted white bags.
dull cyan bags contain 4 pale violet bags, 2 light gold bags, 4 dark tomato bags.
posh beige bags contain 5 mirrored cyan bags, 5 dotted red bags, 3 clear purple bags, 3 posh white bags.
dotted maroon bags contain 3 pale orange bags, 1 striped black bag, 4 faded fuchsia bags.
dotted tomato bags contain 5 striped magenta bags, 4 striped orange bags, 3 muted teal bags, 3 bright black bags.
drab teal bags contain 5 striped tan bags, 4 dull green bags, 5 muted coral bags, 1 clear red bag.
vibrant magenta bags contain 5 bright orange bags, 4 mirrored gray bags, 1 faded tan bag, 4 faded brown bags.
posh crimson bags contain 5 light lime bags, 1 faded brown bag, 2 posh red bags.
dull lavender bags contain 4 clear green bags, 5 wavy orange bags, 5 posh green bags, 3 plaid orange bags.
wavy yellow bags contain 2 light teal bags.
dotted bronze bags contain 3 clear red bags, 4 posh plum bags, 4 light lavender bags, 4 faded fuchsia bags.
dim olive bags contain 2 dotted chartreuse bags.
dark gray bags contain 3 shiny olive bags.
posh salmon bags contain 1 pale purple bag, 2 clear tomato bags, 4 shiny gold bags.
shiny coral bags contain 3 dark olive bags, 2 dull fuchsia bags, 1 dull gold bag.
vibrant green bags contain 2 light fuchsia bags, 5 vibrant violet bags, 3 dotted blue bags.
pale lime bags contain 4 vibrant gold bags, 5 dotted yellow bags.
vibrant yellow bags contain 5 clear violet bags, 1 dark maroon bag.
pale beige bags contain 4 faded red bags, 4 striped green bags.
dim bronze bags contain 5 posh chartreuse bags, 5 light white bags.
clear fuchsia bags contain 5 posh yellow bags, 4 faded fuchsia bags.
faded chartreuse bags contain 5 drab purple bags, 1 wavy olive bag, 3 light black bags, 1 dotted brown bag.
mirrored turquoise bags contain 1 faded fuchsia bag, 2 mirrored blue bags.
light maroon bags contain 4 dotted blue bags, 4 muted gold bags, 3 faded lavender bags.
muted crimson bags contain 5 posh bronze bags.
mirrored blue bags contain 1 faded lavender bag, 5 bright chartreuse bags, 4 dotted brown bags.
striped brown bags contain 2 clear cyan bags, 4 vibrant orange bags, 5 shiny tan bags.
muted orange bags contain 3 dotted black bags, 4 clear beige bags, 2 plaid beige bags, 1 mirrored coral bag.
clear beige bags contain 3 wavy tan bags, 5 dark aqua bags.
bright silver bags contain 3 striped purple bags.
muted plum bags contain 5 light purple bags, 1 light lavender bag, 2 drab maroon bags, 1 posh black bag.
vibrant salmon bags contain 1 shiny teal bag.
dotted chartreuse bags contain 4 vibrant gold bags.
shiny lime bags contain 3 dotted crimson bags, 3 striped crimson bags.
wavy brown bags contain 1 pale violet bag, 3 light beige bags, 2 wavy aqua bags, 4 dim teal bags.
clear yellow bags contain 3 dotted tan bags.
bright red bags contain 1 dim tomato bag, 5 clear tan bags, 2 posh red bags, 5 mirrored yellow bags.
drab tomato bags contain 1 drab yellow bag.
dull crimson bags contain 1 dotted brown bag, 2 bright gray bags, 4 dim tan bags.
shiny beige bags contain 2 plaid teal bags.
dotted coral bags contain 4 plaid teal bags, 2 pale turquoise bags, 4 dark lime bags, 2 pale purple bags.
shiny plum bags contain 5 dull coral bags, 1 shiny gold bag.
light coral bags contain 2 pale bronze bags, 1 clear aqua bag.
vibrant cyan bags contain 1 muted fuchsia bag, 4 pale tan bags, 1 shiny green bag, 1 dotted blue bag.
bright purple bags contain 4 faded white bags.
mirrored chartreuse bags contain 2 shiny orange bags.
light brown bags contain 4 striped violet bags, 4 striped purple bags, 3 wavy yellow bags, 2 drab blue bags.
clear brown bags contain 1 clear indigo bag, 2 dark coral bags.
vibrant fuchsia bags contain 4 dull tan bags, 4 vibrant bronze bags, 1 light white bag, 5 vibrant tomato bags.
clear crimson bags contain 5 muted tomato bags.
muted red bags contain 2 dull beige bags, 2 dark turquoise bags, 1 dark fuchsia bag.
dull salmon bags contain 2 bright tan bags, 5 faded white bags, 4 muted beige bags, 1 dull cyan bag.
drab lavender bags contain 1 dark chartreuse bag.
vibrant plum bags contain 1 dark violet bag, 2 mirrored red bags, 3 muted purple bags, 5 dull blue bags.
drab maroon bags contain 3 plaid teal bags, 4 muted beige bags, 4 posh gold bags, 5 mirrored coral bags.
posh magenta bags contain 4 wavy tomato bags, 3 wavy beige bags.
striped olive bags contain 3 shiny plum bags, 4 plaid gold bags.
vibrant crimson bags contain 2 dim chartreuse bags.
drab lime bags contain 1 vibrant aqua bag.
wavy maroon bags contain 2 dark tan bags, 4 faded brown bags, 4 dim silver bags, 1 muted lime bag.
dull tomato bags contain 2 dotted bronze bags, 5 vibrant maroon bags, 4 plaid tan bags.
dim teal bags contain 5 muted beige bags, 2 mirrored indigo bags, 4 vibrant lavender bags.
wavy white bags contain 1 muted white bag, 1 dim chartreuse bag.
bright lime bags contain 3 dull gold bags, 2 dull indigo bags, 4 drab teal bags.
plaid aqua bags contain 4 light lavender bags, 4 posh gold bags, 3 wavy violet bags, 5 muted chartreuse bags.
mirrored purple bags contain 3 dark lavender bags, 3 clear salmon bags, 1 plaid white bag, 1 striped violet bag.
plaid maroon bags contain 4 dotted red bags, 1 mirrored coral bag, 5 muted indigo bags, 1 clear turquoise bag.
dark turquoise bags contain 4 bright crimson bags, 2 dotted bronze bags, 2 pale violet bags, 5 wavy aqua bags.
dull silver bags contain 2 wavy olive bags, 5 shiny violet bags.
muted olive bags contain 5 plaid beige bags, 3 dark brown bags, 1 clear black bag, 4 faded red bags.
drab indigo bags contain 1 pale violet bag.
muted lime bags contain 5 striped violet bags, 2 plaid lavender bags.
drab blue bags contain 1 pale tomato bag.
drab bronze bags contain 3 vibrant blue bags, 1 vibrant bronze bag.
muted gray bags contain 4 dim chartreuse bags.
striped teal bags contain 4 dark coral bags.
light green bags contain 2 plaid teal bags, 5 pale bronze bags, 3 dull teal bags.
plaid salmon bags contain 3 bright chartreuse bags.
dotted blue bags contain 4 drab plum bags, 1 light tan bag.
dark violet bags contain 5 dark coral bags, 5 dotted lavender bags, 5 pale brown bags, 1 vibrant lavender bag.
pale gold bags contain 1 bright silver bag, 2 dark cyan bags, 1 dull tan bag, 1 plaid blue bag.
light turquoise bags contain 3 drab turquoise bags, 1 dull tan bag, 3 muted indigo bags, 5 dotted fuchsia bags.
plaid blue bags contain 3 pale violet bags, 4 dotted brown bags.
bright magenta bags contain 4 shiny brown bags, 4 wavy violet bags, 3 dark aqua bags, 2 bright turquoise bags.
clear maroon bags contain 4 posh plum bags.
posh red bags contain 5 plaid cyan bags, 4 clear orange bags.
posh purple bags contain 5 plaid cyan bags, 1 drab lavender bag, 3 pale purple bags, 4 light coral bags.
dim lime bags contain 2 striped beige bags, 2 dark blue bags.
shiny indigo bags contain 2 vibrant black bags, 2 wavy orange bags.
posh gold bags contain 5 dull beige bags, 1 shiny teal bag.
wavy beige bags contain 2 dark beige bags, 4 muted chartreuse bags, 2 dim lavender bags, 2 mirrored indigo bags.
dim lavender bags contain 2 vibrant aqua bags.
mirrored beige bags contain 2 posh red bags, 3 pale olive bags, 3 dull brown bags.
clear indigo bags contain 1 shiny teal bag, 1 mirrored indigo bag.
dim chartreuse bags contain 5 bright tan bags.
plaid coral bags contain 2 clear green bags.
wavy cyan bags contain 2 drab blue bags, 5 dotted coral bags, 3 mirrored beige bags.
dotted crimson bags contain 1 muted tan bag, 4 dull maroon bags, 2 striped crimson bags.
drab cyan bags contain 1 dull cyan bag, 3 pale cyan bags, 4 faded aqua bags, 4 clear tan bags.
wavy coral bags contain 4 wavy plum bags, 5 plaid beige bags, 5 pale tan bags.
pale maroon bags contain 5 pale tan bags.
shiny blue bags contain 3 light coral bags, 4 bright olive bags.
plaid orange bags contain 2 dim white bags, 3 shiny silver bags, 3 pale violet bags.
dark tan bags contain 2 vibrant olive bags, 3 plaid turquoise bags, 2 dull chartreuse bags, 4 dull teal bags.
posh cyan bags contain 5 posh orange bags, 5 shiny brown bags.
clear red bags contain no other bags.
light fuchsia bags contain 4 dark beige bags, 1 light black bag, 1 striped blue bag.
striped beige bags contain 2 bright silver bags, 2 faded indigo bags, 1 plaid turquoise bag, 3 shiny plum bags.
wavy lavender bags contain 4 posh black bags, 1 dotted teal bag, 4 drab purple bags.
dotted cyan bags contain 5 dull yellow bags, 5 light beige bags, 2 vibrant aqua bags, 5 dark beige bags.
drab crimson bags contain 5 dark magenta bags.
plaid olive bags contain 1 vibrant crimson bag, 5 dim bronze bags, 1 striped black bag, 1 drab brown bag.
dim yellow bags contain 3 plaid gray bags, 5 vibrant salmon bags, 4 vibrant olive bags.
striped indigo bags contain 3 mirrored coral bags, 2 vibrant bronze bags, 3 dull brown bags.
dark green bags contain 3 shiny teal bags, 5 pale chartreuse bags, 5 dull teal bags, 5 striped silver bags.
drab aqua bags contain 5 dark aqua bags, 5 dotted blue bags, 1 pale violet bag, 1 pale bronze bag.
striped orange bags contain 3 striped green bags, 4 muted beige bags, 2 clear aqua bags, 3 dark crimson bags.
striped silver bags contain 1 pale cyan bag, 5 drab gold bags, 3 bright turquoise bags, 4 light gold bags.
bright blue bags contain 4 light black bags, 1 plaid salmon bag.
striped red bags contain 1 vibrant plum bag, 5 dull blue bags, 1 dull olive bag.
posh white bags contain 3 drab bronze bags, 4 bright crimson bags.
drab turquoise bags contain 4 striped crimson bags.
clear lavender bags contain 4 faded magenta bags, 1 mirrored gray bag, 4 wavy yellow bags, 1 dotted cyan bag.
drab chartreuse bags contain 1 shiny gray bag.
clear purple bags contain 1 shiny brown bag, 2 bright gray bags, 5 clear salmon bags.
dull magenta bags contain 1 posh cyan bag, 3 muted indigo bags, 1 dim lavender bag.
posh chartreuse bags contain 4 wavy violet bags.
posh maroon bags contain 4 striped gray bags.
clear blue bags contain 3 faded lime bags, 2 pale purple bags.
dark gold bags contain 2 dull beige bags, 3 plaid blue bags.
muted coral bags contain 4 dark gold bags.
bright aqua bags contain 3 muted crimson bags.
dull orange bags contain 3 posh gold bags.
shiny turquoise bags contain 3 dark brown bags, 5 shiny red bags, 3 muted beige bags.
mirrored brown bags contain 2 light orange bags, 5 drab coral bags, 2 wavy lime bags.
striped chartreuse bags contain 1 dark lavender bag, 4 pale salmon bags, 4 dotted violet bags, 4 clear tomato bags.
shiny salmon bags contain 4 dim magenta bags.
bright fuchsia bags contain 4 muted chartreuse bags, 3 mirrored green bags.
shiny tomato bags contain 5 clear gray bags, 2 drab silver bags, 3 clear green bags.
muted turquoise bags contain 5 shiny orange bags, 1 mirrored tan bag.
vibrant tan bags contain 1 faded magenta bag, 5 drab plum bags.
posh gray bags contain 2 posh magenta bags.
dark lime bags contain 5 clear aqua bags, 3 posh plum bags.
plaid violet bags contain 2 light bronze bags, 1 light green bag, 1 striped gold bag.
vibrant blue bags contain 2 wavy yellow bags, 4 dim magenta bags, 1 drab maroon bag, 4 dotted brown bags.
faded brown bags contain 2 pale blue bags, 4 bright olive bags, 1 bright bronze bag.
striped salmon bags contain 4 light green bags, 4 wavy orange bags, 3 mirrored coral bags.
plaid lime bags contain 1 bright green bag, 2 light indigo bags.
plaid chartreuse bags contain 4 vibrant green bags, 5 dotted coral bags, 2 muted gray bags, 4 bright purple bags.
light salmon bags contain 5 vibrant maroon bags, 3 dark lime bags, 5 drab tan bags, 1 striped cyan bag.
muted fuchsia bags contain 4 light silver bags, 3 light teal bags, 3 muted gold bags.
clear plum bags contain 5 light turquoise bags.
posh orange bags contain 5 wavy tan bags, 4 dark turquoise bags.
dotted tan bags contain 2 plaid teal bags.
shiny teal bags contain no other bags.
posh violet bags contain 2 vibrant tomato bags, 4 bright orange bags, 3 dotted red bags, 5 pale silver bags.
dotted lime bags contain 5 wavy tan bags, 2 dark tomato bags, 5 mirrored gray bags, 2 light aqua bags.
posh plum bags contain no other bags.
mirrored white bags contain 4 clear gold bags, 1 dark teal bag.
pale indigo bags contain 4 shiny magenta bags, 1 shiny maroon bag.
drab beige bags contain 1 muted plum bag, 5 posh turquoise bags, 2 vibrant fuchsia bags.
faded black bags contain 5 wavy black bags.
plaid beige bags contain 2 posh purple bags, 4 pale olive bags, 3 striped green bags, 5 bright orange bags.
faded white bags contain 4 clear red bags, 4 faded fuchsia bags, 1 dull beige bag.
shiny violet bags contain 3 shiny green bags, 5 wavy brown bags.
wavy blue bags contain 2 light teal bags, 4 dull silver bags, 2 bright black bags, 4 dull tan bags.
wavy red bags contain 4 dark silver bags, 5 dotted chartreuse bags, 2 clear salmon bags, 2 striped tan bags.
shiny lavender bags contain 2 muted bronze bags.
faded coral bags contain 5 dotted chartreuse bags, 2 vibrant silver bags, 2 wavy black bags.
clear coral bags contain 4 muted fuchsia bags.
mirrored coral bags contain 1 vibrant lavender bag.
dim black bags contain 2 bright olive bags, 1 dull teal bag, 4 shiny purple bags.
pale blue bags contain 1 light black bag, 2 light white bags, 1 dull maroon bag, 5 plaid teal bags.
plaid plum bags contain 3 muted coral bags, 1 dim brown bag, 2 plaid aqua bags, 1 vibrant blue bag.
muted black bags contain 5 light blue bags, 3 clear salmon bags.
dotted white bags contain 3 shiny salmon bags, 1 faded maroon bag.
drab coral bags contain 3 striped gold bags, 4 shiny aqua bags, 5 wavy red bags.
dotted salmon bags contain 4 drab black bags, 2 light aqua bags.
mirrored indigo bags contain 3 wavy orange bags, 5 posh plum bags.
vibrant violet bags contain 1 striped lavender bag, 1 muted purple bag, 2 drab silver bags, 5 pale olive bags.
plaid teal bags contain 4 shiny teal bags, 2 wavy turquoise bags, 2 vibrant aqua bags.
dull violet bags contain 5 light coral bags, 1 vibrant tan bag.
faded crimson bags contain 3 dark chartreuse bags, 2 vibrant cyan bags, 3 mirrored cyan bags.
posh bronze bags contain 4 plaid lavender bags, 3 shiny gold bags, 5 mirrored coral bags, 2 shiny indigo bags.
clear olive bags contain 2 muted gray bags, 2 dark red bags, 5 clear brown bags, 5 bright silver bags.

612
2020/input/2020/day8.txt Normal file
View File

@@ -0,0 +1,612 @@
acc +18
nop +222
acc -16
acc +28
jmp +475
acc -6
jmp +584
acc -12
acc -8
jmp +554
acc -9
acc +12
acc -16
acc +27
jmp +336
acc -4
jmp +214
acc +38
jmp +61
acc +3
acc +28
acc +5
acc -19
jmp +584
nop +206
jmp +506
acc +36
jmp +133
acc +20
acc +43
acc -18
jmp +409
acc +24
jmp +131
acc -12
acc +7
acc +7
jmp +454
acc +37
acc -6
nop +558
acc +31
jmp +124
acc -15
nop +201
acc -7
jmp +297
acc +3
nop +517
jmp +221
jmp +211
acc +28
acc +35
jmp +5
acc +31
nop +325
acc -15
jmp +116
jmp +1
nop +333
acc -2
acc -5
jmp +138
acc +19
acc +9
jmp +180
acc +18
jmp +228
jmp +495
jmp +382
acc +20
nop +414
nop +139
acc +33
jmp +171
acc -10
jmp +41
acc -2
jmp +80
acc +20
nop +451
acc +2
acc +24
jmp +102
acc +1
acc -11
acc +9
acc +38
jmp -73
acc +17
acc +16
acc +12
acc +43
jmp +168
jmp +286
acc +6
acc +6
jmp +271
acc -17
acc -5
acc +1
jmp -50
acc -9
acc +6
acc -2
acc +33
jmp +385
acc +18
acc +24
jmp +370
acc -5
acc +23
acc +6
jmp +98
acc -10
acc -16
jmp +329
nop +41
jmp +463
nop +224
acc +35
jmp +345
acc +34
acc -18
acc +5
jmp +177
nop -57
nop -80
acc +20
jmp -12
acc +24
acc +39
jmp +363
jmp +253
acc -14
acc +0
acc +22
jmp +118
acc +43
acc -2
jmp +300
acc -14
acc +8
acc +47
jmp +271
jmp +420
acc +33
acc +15
acc +20
acc +25
jmp +84
acc +41
jmp +420
acc +25
jmp +238
jmp +1
acc +14
jmp +415
jmp +68
jmp +262
acc +34
jmp +346
acc +39
jmp +56
jmp +364
jmp -133
acc +13
jmp +1
acc +33
jmp +408
acc +29
acc -4
jmp +319
jmp +106
jmp +228
acc -8
acc +8
acc +22
jmp -146
jmp +223
acc +27
nop +191
acc +49
jmp +331
jmp +39
jmp -170
acc +28
acc -6
acc +50
jmp +268
acc +41
nop +254
acc +28
jmp +269
jmp +140
acc +10
nop +131
acc +3
jmp -40
jmp +373
acc +47
jmp -91
acc -19
jmp +300
acc -2
jmp +1
acc +44
acc -11
jmp +306
acc +33
jmp -15
acc +9
jmp +1
jmp +144
acc +40
nop +184
nop -75
nop +228
jmp +296
acc +22
nop +364
jmp -214
jmp +18
jmp +375
acc +22
jmp -67
acc +8
acc -17
jmp +174
jmp -99
nop -45
acc +7
jmp -213
jmp -218
acc +50
nop +52
nop +98
jmp -142
acc +18
jmp +252
acc +36
jmp -194
acc +1
nop -53
jmp -127
jmp +327
acc +7
acc -9
acc +39
nop -127
jmp +84
jmp -117
nop -29
acc +43
jmp -216
acc +25
acc +16
acc +40
nop +122
jmp +140
jmp +180
acc +42
acc -5
acc -14
jmp -84
jmp -31
acc +37
acc -11
jmp -217
jmp +210
jmp +170
nop +301
jmp +309
acc +6
jmp +135
acc +6
nop -123
acc +17
jmp +315
acc -1
nop -46
nop -58
nop -59
jmp +202
acc +48
acc +38
jmp +86
acc -4
acc +33
acc +28
jmp -50
nop +43
acc +38
acc +13
jmp +33
acc +4
acc +6
jmp -78
acc +22
acc +7
acc -9
jmp -56
acc +30
nop +54
nop -81
nop +198
jmp +252
jmp +1
acc +6
acc -10
acc +29
jmp -242
jmp +1
acc +42
acc +34
acc +22
jmp +231
acc +29
acc -10
jmp -161
acc +37
acc +9
jmp -77
acc -15
acc +32
acc +32
jmp -6
acc +0
nop -124
nop +174
jmp +20
acc +45
acc +24
jmp -13
acc +6
acc -10
acc +23
acc -15
jmp +34
acc +5
acc +38
acc +42
jmp -116
acc +0
acc +8
jmp -243
acc -18
acc +25
acc +1
jmp +158
nop +65
jmp +1
jmp +151
acc +12
acc +12
jmp +1
jmp -305
jmp +29
jmp -263
acc +33
jmp +1
nop +142
jmp +78
acc +41
nop -141
acc -9
acc +5
jmp -245
jmp +41
acc +16
nop -83
jmp -28
nop -149
acc +38
jmp -15
acc +7
nop -329
acc +5
acc +21
jmp -7
acc -19
jmp -38
acc +5
acc +3
acc +10
jmp -181
jmp -240
acc +19
acc +15
acc +31
acc -11
jmp -340
acc +12
acc +46
jmp +127
acc +12
acc +31
acc +30
jmp -158
acc -10
jmp -374
jmp +50
acc +43
nop +42
acc +19
jmp -232
acc -14
acc -4
jmp +95
acc +23
acc +49
acc +31
nop -139
jmp -272
jmp -141
acc +26
acc -8
jmp +173
nop +145
nop +133
jmp +164
acc +7
jmp +23
acc -4
acc +48
jmp -138
acc +4
jmp -389
nop +156
acc +44
acc +40
jmp +146
nop -247
acc +44
jmp +1
acc +28
jmp +95
acc +13
acc +2
jmp -254
acc +24
jmp +122
acc +39
acc +0
jmp -12
jmp -179
nop -44
nop +100
acc -19
nop -47
jmp -107
acc +32
acc +33
acc +42
acc +6
jmp -366
jmp -122
acc +2
nop -443
nop +72
jmp -381
jmp -446
jmp -332
acc -7
acc +45
jmp -355
acc +27
acc -4
acc +3
jmp +96
acc +45
jmp -402
acc +45
acc -3
acc +22
jmp -141
acc +29
acc -1
jmp +29
acc -1
acc -10
jmp -208
acc +6
nop -196
jmp -218
acc -12
acc +49
nop -137
jmp -430
acc +21
jmp -110
nop -287
acc -3
jmp -42
jmp -487
acc -16
acc -1
acc +7
acc +39
jmp -119
jmp +1
acc +9
jmp -23
acc +27
jmp -300
acc +12
jmp -440
acc +2
acc +38
acc +12
jmp -84
acc +25
acc -14
jmp -418
acc -15
acc +48
jmp +1
nop -383
jmp -365
acc +47
jmp -193
acc +23
jmp -235
jmp +1
acc -4
acc +35
nop -64
jmp -87
acc +32
jmp -339
jmp -479
acc -4
acc +32
acc -10
jmp -77
acc +0
acc +47
acc +41
jmp -308
acc -8
acc -9
jmp -229
acc -14
acc +24
nop -380
acc +49
jmp -174
acc -11
nop -69
jmp +3
acc -14
jmp -89
jmp -301
acc +46
acc +8
nop -156
acc +44
jmp +1
jmp +26
acc +17
acc +23
acc +6
jmp -4
jmp -97
jmp -324
acc +2
jmp -27
nop -195
acc +3
acc -13
acc +15
jmp -19
acc +30
nop -318
jmp +19
nop -72
jmp -315
acc +4
nop +6
jmp -384
jmp -505
jmp -512
acc +33
jmp -168
jmp -443
nop -519
acc +7
acc +41
acc +15
jmp -269
nop -539
jmp -416
jmp -326
nop -221
acc +14
jmp -186
acc -1
jmp -295
acc +29
acc +43
nop -436
nop -421
jmp -123
acc +13
acc -11
acc +12
jmp -155
acc +9
acc -16
acc -15
nop -380
jmp +1

1000
2020/input/2020/day9.txt Normal file

File diff suppressed because it is too large Load Diff

10
2020/scripts/update-readme.sh Executable file
View File

@@ -0,0 +1,10 @@
#!/usr/bin/env bash
MAX_DAY=$(ls src/day* | tr -d 'a-z/. ' | sort -n | tail -1)
(
echo "# Results"
echo
echo "\`\`\`"
cargo run --release
echo "\`\`\`"
echo
) > README.md

238
2020/src/day10.rs Normal file
View File

@@ -0,0 +1,238 @@
//! --- Day 10: Adapter Array ---
//! Patched into the aircraft's data port, you discover weather forecasts of a massive tropical storm. Before you can figure out whether it will impact your vacation plans, however, your device suddenly turns off!
//!
//! Its battery is dead.
//!
//! You'll need to plug it in. There's only one problem: the charging outlet near your seat produces the wrong number of jolts. Always prepared, you make a list of all of the joltage adapters in your bag.
//!
//! Each of your joltage adapters is rated for a specific output joltage (your puzzle input). Any given adapter can take an input 1, 2, or 3 jolts lower than its rating and still produce its rated output joltage.
//!
//! In addition, your device has a built-in joltage adapter rated for 3 jolts higher than the highest-rated adapter in your bag. (If your adapter list were 3, 9, and 6, your device's built-in adapter would be rated for 12 jolts.)
//!
//! Treat the charging outlet near your seat as having an effective joltage rating of 0.
//!
//! Since you have some time to kill, you might as well test all of your adapters. Wouldn't want to get to your resort and realize you can't even charge your device!
//!
//! If you use every adapter in your bag at once, what is the distribution of joltage differences between the charging outlet, the adapters, and your device?
//!
//! For example, suppose that in your bag, you have adapters with the following joltage ratings:
//!
//! 16
//! 10
//! 15
//! 5
//! 1
//! 11
//! 7
//! 19
//! 6
//! 12
//! 4
//! With these adapters, your device's built-in joltage adapter would be rated for 19 + 3 = 22 jolts, 3 higher than the highest-rated adapter.
//!
//! Because adapters can only connect to a source 1-3 jolts lower than its rating, in order to use every adapter, you'd need to choose them like this:
//!
//! The charging outlet has an effective rating of 0 jolts, so the only adapters that could connect to it directly would need to have a joltage rating of 1, 2, or 3 jolts. Of these, only one you have is an adapter rated 1 jolt (difference of 1).
//! From your 1-jolt rated adapter, the only choice is your 4-jolt rated adapter (difference of 3).
//! From the 4-jolt rated adapter, the adapters rated 5, 6, or 7 are valid choices. However, in order to not skip any adapters, you have to pick the adapter rated 5 jolts (difference of 1).
//! Similarly, the next choices would need to be the adapter rated 6 and then the adapter rated 7 (with difference of 1 and 1).
//! The only adapter that works with the 7-jolt rated adapter is the one rated 10 jolts (difference of 3).
//! From 10, the choices are 11 or 12; choose 11 (difference of 1) and then 12 (difference of 1).
//! After 12, only valid adapter has a rating of 15 (difference of 3), then 16 (difference of 1), then 19 (difference of 3).
//! Finally, your device's built-in adapter is always 3 higher than the highest adapter, so its rating is 22 jolts (always a difference of 3).
//! In this example, when using every adapter, there are 7 differences of 1 jolt and 5 differences of 3 jolts.
//!
//! Here is a larger example:
//!
//! 28
//! 33
//! 18
//! 42
//! 31
//! 14
//! 46
//! 20
//! 48
//! 47
//! 24
//! 23
//! 49
//! 45
//! 19
//! 38
//! 39
//! 11
//! 1
//! 32
//! 25
//! 35
//! 8
//! 17
//! 7
//! 9
//! 4
//! 2
//! 34
//! 10
//! 3
//! In this larger example, in a chain that uses all of the adapters, there are 22 differences of 1 jolt and 10 differences of 3 jolts.
//!
//! Find a chain that uses all of your adapters to connect the charging outlet to your device's built-in adapter and count the joltage differences between the charging outlet, the adapters, and your device. What is the number of 1-jolt differences multiplied by the number of 3-jolt differences?
//!
//! --- Part Two ---
//! To completely determine whether you have enough adapters, you'll need to figure out how many different ways they can be arranged. Every arrangement needs to connect the charging outlet to your device. The previous rules about when adapters can successfully connect still apply.
//!
//! The first example above (the one that starts with 16, 10, 15) supports the following arrangements:
//!
//! (0), 1, 4, 5, 6, 7, 10, 11, 12, 15, 16, 19, (22)
//! (0), 1, 4, 5, 6, 7, 10, 12, 15, 16, 19, (22)
//! (0), 1, 4, 5, 7, 10, 11, 12, 15, 16, 19, (22)
//! (0), 1, 4, 5, 7, 10, 12, 15, 16, 19, (22)
//! (0), 1, 4, 6, 7, 10, 11, 12, 15, 16, 19, (22)
//! (0), 1, 4, 6, 7, 10, 12, 15, 16, 19, (22)
//! (0), 1, 4, 7, 10, 11, 12, 15, 16, 19, (22)
//! (0), 1, 4, 7, 10, 12, 15, 16, 19, (22)
//! (The charging outlet and your device's built-in adapter are shown in parentheses.) Given the adapters from the first example, the total number of arrangements that connect the charging outlet to your device is 8.
//!
//! The second example above (the one that starts with 28, 33, 18) has many arrangements. Here are a few:
//!
//! (0), 1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 17, 18, 19, 20, 23, 24, 25, 28, 31,
//! 32, 33, 34, 35, 38, 39, 42, 45, 46, 47, 48, 49, (52)
//!
//! (0), 1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 17, 18, 19, 20, 23, 24, 25, 28, 31,
//! 32, 33, 34, 35, 38, 39, 42, 45, 46, 47, 49, (52)
//!
//! (0), 1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 17, 18, 19, 20, 23, 24, 25, 28, 31,
//! 32, 33, 34, 35, 38, 39, 42, 45, 46, 48, 49, (52)
//!
//! (0), 1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 17, 18, 19, 20, 23, 24, 25, 28, 31,
//! 32, 33, 34, 35, 38, 39, 42, 45, 46, 49, (52)
//!
//! (0), 1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 17, 18, 19, 20, 23, 24, 25, 28, 31,
//! 32, 33, 34, 35, 38, 39, 42, 45, 47, 48, 49, (52)
//!
//! (0), 3, 4, 7, 10, 11, 14, 17, 20, 23, 25, 28, 31, 34, 35, 38, 39, 42, 45,
//! 46, 48, 49, (52)
//!
//! (0), 3, 4, 7, 10, 11, 14, 17, 20, 23, 25, 28, 31, 34, 35, 38, 39, 42, 45,
//! 46, 49, (52)
//!
//! (0), 3, 4, 7, 10, 11, 14, 17, 20, 23, 25, 28, 31, 34, 35, 38, 39, 42, 45,
//! 47, 48, 49, (52)
//!
//! (0), 3, 4, 7, 10, 11, 14, 17, 20, 23, 25, 28, 31, 34, 35, 38, 39, 42, 45,
//! 47, 49, (52)
//!
//! (0), 3, 4, 7, 10, 11, 14, 17, 20, 23, 25, 28, 31, 34, 35, 38, 39, 42, 45,
//! 48, 49, (52)
//! In total, this set of adapters can connect the charging outlet to your device in 19208 distinct arrangements.
//!
//! You glance back down at your bag and try to remember why you brought so many adapters; there must be more than a trillion valid ways to arrange them! Surely, there must be an efficient way to count the arrangements.
//!
//! What is the total number of distinct ways you can arrange the adapters to connect the charging outlet to your device?
use aoc_runner_derive::{aoc, aoc_generator};
#[aoc_generator(day10)]
fn parse(input: &str) -> Vec<usize> {
let mut jolts: Vec<_> = input.split('\n').map(|s| s.parse().unwrap()).collect();
// Add outlet
jolts.push(0);
// Add device power adapter
jolts.push(jolts.iter().max().unwrap() + 3);
jolts.sort();
jolts
}
#[aoc(day10, part1)]
fn solution1(jolts: &[usize]) -> usize {
let (one, three) = jolts.windows(2).fold((0, 0), |(one, three), pair| {
let first = pair[0];
let second = pair[1];
match second - first {
1 => (one + 1, three),
3 => (one, three + 1),
d => panic!(format!("unexpected diff: {} - {} = {}", second, first, d)),
}
});
one * three
}
#[aoc(day10, part2)]
fn solution2(jolts: &[usize]) -> usize {
// count_permutations(jolts)
// Store permutations at each node.
let mut paths = vec![1; jolts.len()];
jolts.iter().enumerate().skip(1).for_each(|(cur, jolt)| {
let p = (cur.saturating_sub(3)..cur)
.filter(|idx| (jolt - jolts[*idx]) <= 3)
.map(|idx| paths[idx])
.sum();
paths[cur] = p;
});
paths[paths.len() - 1]
}
#[cfg(test)]
mod tests {
use super::*;
// 1 4 5 6 7 10 11 12 15 16 19
const INPUT1: &'static str = r#"16
10
15
5
1
11
7
19
6
12
4"#;
// 1 2 3 4 7 8 9 10 11 14 17 18 19 20 23 24 25 31 32 33 34 35 38 39 42 45 46 47 48 49
const INPUT2: &'static str = r#"28
33
18
42
31
14
46
20
48
47
24
23
49
45
19
38
39
11
1
32
25
35
8
17
7
9
4
2
34
10
3"#;
#[test]
fn part1() {
assert_eq!(solution1(&parse(&INPUT1)), 7 * 5);
assert_eq!(solution1(&parse(&INPUT2)), 22 * 10);
}
#[test]
fn part2() {
assert_eq!(solution2(&parse(&INPUT1)), 8);
assert_eq!(solution2(&parse(&INPUT2)), 19208);
}
}

721
2020/src/day11.rs Normal file
View File

@@ -0,0 +1,721 @@
//! --- Day 11: Seating System ---
//! Your plane lands with plenty of time to spare. The final leg of your journey is a ferry that goes directly to the tropical island where you can finally start your vacation. As you reach the waiting area to board the ferry, you realize you're so early, nobody else has even arrived yet!
//!
//! By modeling the process people use to choose (or abandon) their seat in the waiting area, you're pretty sure you can predict the best place to sit. You make a quick map of the seat layout (your puzzle input).
//!
//! The seat layout fits neatly on a grid. Each position is either floor (.), an empty seat (L), or an occupied seat (#). For example, the initial seat layout might look like this:
//!
//! L.LL.LL.LL
//! LLLLLLL.LL
//! L.L.L..L..
//! LLLL.LL.LL
//! L.LL.LL.LL
//! L.LLLLL.LL
//! ..L.L.....
//! LLLLLLLLLL
//! L.LLLLLL.L
//! L.LLLLL.LL
//! Now, you just need to model the people who will be arriving shortly. Fortunately, people are entirely predictable and always follow a simple set of rules. All decisions are based on the number of occupied seats adjacent to a given seat (one of the eight positions immediately up, down, left, right, or diagonal from the seat). The following rules are applied to every seat simultaneously:
//!
//! If a seat is empty (L) and there are no occupied seats adjacent to it, the seat becomes occupied.
//! If a seat is occupied (#) and four or more seats adjacent to it are also occupied, the seat becomes empty.
//! Otherwise, the seat's state does not change.
//! Floor (.) never changes; seats don't move, and nobody sits on the floor.
//!
//! After one round of these rules, every seat in the example layout becomes occupied:
//!
//! #.##.##.##
//! #######.##
//! #.#.#..#..
//! ####.##.##
//! #.##.##.##
//! #.#####.##
//! ..#.#.....
//! ##########
//! #.######.#
//! #.#####.##
//! After a second round, the seats with four or more occupied adjacent seats become empty again:
//!
//! #.LL.L#.##
//! #LLLLLL.L#
//! L.L.L..L..
//! #LLL.LL.L#
//! #.LL.LL.LL
//! #.LLLL#.##
//! ..L.L.....
//! #LLLLLLLL#
//! #.LLLLLL.L
//! #.#LLLL.##
//! This process continues for three more rounds:
//!
//! #.##.L#.##
//! #L###LL.L#
//! L.#.#..#..
//! #L##.##.L#
//! #.##.LL.LL
//! #.###L#.##
//! ..#.#.....
//! #L######L#
//! #.LL###L.L
//! #.#L###.##
//!
//! #.#L.L#.##
//! #LLL#LL.L#
//! L.L.L..#..
//! #LLL.##.L#
//! #.LL.LL.LL
//! #.LL#L#.##
//! ..L.L.....
//! #L#LLLL#L#
//! #.LLLLLL.L
//! #.#L#L#.##
//!
//! #.#L.L#.##
//! #LLL#LL.L#
//! L.#.L..#..
//! #L##.##.L#
//! #.#L.LL.LL
//! #.#L#L#.##
//! ..L.L.....
//! #L#L##L#L#
//! #.LLLLLL.L
//! #.#L#L#.##
//!
//! At this point, something interesting happens: the chaos stabilizes and further applications of these rules cause no seats to change state! Once people stop moving around, you count 37 occupied seats.
//!
//! Simulate your seating area by applying the seating rules repeatedly until no seats change state. How many seats end up occupied?
//!
//! --- Part Two ---
//! As soon as people start to arrive, you realize your mistake. People don't just care about adjacent seats - they care about the first seat they can see in each of those eight directions!
//!
//! Now, instead of considering just the eight immediately adjacent seats, consider the first seat in each of those eight directions. For example, the empty seat below would see eight occupied seats:
//!
//! .......#.
//! ...#.....
//! .#.......
//! .........
//! ..#L....#
//! ....#....
//! .........
//! #........
//! ...#.....
//! The leftmost empty seat below would only see one empty seat, but cannot see any of the occupied ones:
//!
//! .............
//! .L.L.#.#.#.#.
//! .............
//! The empty seat below would see no occupied seats:
//!
//! .##.##.
//! #.#.#.#
//! ##...##
//! ...L...
//! ##...##
//! #.#.#.#
//! .##.##.
//! Also, people seem to be more tolerant than you expected: it now takes five or more visible occupied seats for an occupied seat to become empty (rather than four or more from the previous rules). The other rules still apply: empty seats that see no occupied seats become occupied, seats matching no rule don't change, and floor never changes.
//!
//! Given the same starting layout as above, these new rules cause the seating area to shift around as follows:
//!
//! L.LL.LL.LL
//! LLLLLLL.LL
//! L.L.L..L..
//! LLLL.LL.LL
//! L.LL.LL.LL
//! L.LLLLL.LL
//! ..L.L.....
//! LLLLLLLLLL
//! L.LLLLLL.L
//! L.LLLLL.LL
//! #.##.##.##
//! #######.##
//! #.#.#..#..
//! ####.##.##
//! #.##.##.##
//! #.#####.##
//! ..#.#.....
//! ##########
//! #.######.#
//! #.#####.##
//! #.LL.LL.L#
//! #LLLLLL.LL
//! L.L.L..L..
//! LLLL.LL.LL
//! L.LL.LL.LL
//! L.LLLLL.LL
//! ..L.L.....
//! LLLLLLLLL#
//! #.LLLLLL.L
//! #.LLLLL.L#
//! #.L#.##.L#
//! #L#####.LL
//! L.#.#..#..
//! ##L#.##.##
//! #.##.#L.##
//! #.#####.#L
//! ..#.#.....
//! LLL####LL#
//! #.L#####.L
//! #.L####.L#
//! #.L#.L#.L#
//! #LLLLLL.LL
//! L.L.L..#..
//! ##LL.LL.L#
//! L.LL.LL.L#
//! #.LLLLL.LL
//! ..L.L.....
//! LLLLLLLLL#
//! #.LLLLL#.L
//! #.L#LL#.L#
//! #.L#.L#.L#
//! #LLLLLL.LL
//! L.L.L..#..
//! ##L#.#L.L#
//! L.L#.#L.L#
//! #.L####.LL
//! ..#.#.....
//! LLL###LLL#
//! #.LLLLL#.L
//! #.L#LL#.L#
//! #.L#.L#.L#
//! #LLLLLL.LL
//! L.L.L..#..
//! ##L#.#L.L#
//! L.L#.LL.L#
//! #.LLLL#.LL
//! ..#.L.....
//! LLL###LLL#
//! #.LLLLL#.L
//! #.L#LL#.L#
//! Again, at this point, people stop shifting around and the seating area reaches equilibrium. Once this occurs, you count 26 occupied seats.
//!
//! Given the new visibility method and the rule change for occupied seats becoming empty, once equilibrium is reached, how many seats end up occupied?
use std::convert::TryFrom;
use std::str::FromStr;
use aoc_runner_derive::{aoc, aoc_generator};
#[derive(Clone, Copy, PartialEq)]
enum State {
/// '.'
Floor,
/// 'L'
Empty,
/// '#'
Occupied,
}
use std::fmt;
impl fmt::Debug for State {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self)
}
}
impl fmt::Display for State {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
State::Floor => write!(f, "."),
State::Empty => write!(f, "L"),
State::Occupied => write!(f, "#"),
}
}
}
impl FromStr for State {
type Err = String;
fn from_str(s: &str) -> Result<State, String> {
match s {
"." => Ok(State::Floor),
"L" => Ok(State::Empty),
"#" => Ok(State::Occupied),
s => Err(format!("Unknown map character: '{}'", s)),
}
}
}
impl TryFrom<char> for State {
type Error = String;
fn try_from(c: char) -> Result<State, String> {
match c {
'.' => Ok(State::Floor),
'#' => Ok(State::Occupied),
'L' => Ok(State::Empty),
c => Err(format!("Unknown map character: '{}'", c)),
}
}
}
#[derive(PartialEq)]
struct Map {
cells: Vec<State>,
width: usize,
height: usize,
}
impl fmt::Debug for Map {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self)
}
}
impl fmt::Display for Map {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "\n")?;
for row in self.cells.chunks(self.width) {
for c in row {
write!(f, "{}", c)?;
}
write!(f, "\n")?;
}
Ok(())
}
}
impl FromStr for Map {
type Err = String;
fn from_str(s: &str) -> Result<Map, String> {
let mut cells = Vec::new();
let rows: Vec<_> = s.split("\n").collect();
for row in &rows {
let c: Result<Vec<_>, _> = row.chars().map(|cell| State::try_from(cell)).collect();
cells.extend(c?);
}
let height = rows.len();
let width = cells.len() / height;
Ok(Map {
cells,
height,
width,
})
}
}
use std::ops::{Index, IndexMut};
impl Index<(usize, usize)> for Map {
type Output = State;
fn index(&self, (x, y): (usize, usize)) -> &Self::Output {
&self.cells[x + y * self.width]
}
}
impl IndexMut<(usize, usize)> for Map {
fn index_mut(&mut self, (x, y): (usize, usize)) -> &mut Self::Output {
&mut self.cells[x + y * self.width]
}
}
impl Map {
fn new(width: usize, height: usize) -> Map {
Map {
width,
height,
cells: vec![State::Empty; width * height],
}
}
fn adjacent_count(&self, x: usize, y: usize) -> usize {
use std::cmp::min;
let x_min = x.saturating_sub(1);
let y_min = y.saturating_sub(1);
let x_max = min(x + 1, self.width - 1);
let y_max = min(y + 1, self.height - 1);
let mut cnt = 0;
for y_off in y_min..=y_max {
for x_off in x_min..=x_max {
// Skip the current cell
if x == x_off && y == y_off {
continue;
}
if self[(x_off, y_off)] == State::Occupied {
cnt += 1
}
}
}
cnt
}
/// Counts number of occupied seats in 8 cardinal directions. Stops if it hits an empty seat.
fn line_of_sight_count(&self, x: usize, y: usize) -> usize {
let incs = vec![
// Right
(1, 0),
// Left
(-1, 0),
// Up
(0, -1),
// Down
(0, 1),
// Up-right
(1, -1),
// Up-left
(-1, -1),
// Down-right
(1, 1),
// Down-left
(-1, 1),
];
incs.into_iter()
.map(|inc| self.shoot(x, y, inc))
.filter(|&v| v)
.count()
}
/// Iterates over the map using the offsets until it hits an occupied seat or edge.
/// If an occupied seat is found before an unoccupied seat or edge, true is returned.
/// If an unoccupied seat is found before an occupied seat or edge, false is returned.
/// If an edge is hit, false is returned.
/// Floors are ignored.
fn shoot(&self, x: usize, y: usize, (x_off, y_off): (isize, isize)) -> bool {
let mut x = x as isize;
let mut y = y as isize;
let width = self.width as isize;
let height = self.height as isize;
loop {
x = x + x_off;
y = y + y_off;
// Hit an edge.
if x < 0 || y < 0 || x >= width || y >= height {
return false;
}
let s = self[(x as usize, y as usize)];
if let State::Empty = s {
return false;
}
if let State::Occupied = s {
return true;
}
}
}
fn occupied_count(&self) -> usize {
self.cells.iter().filter(|&c| c == &State::Occupied).count()
}
}
fn step_solution1(map: &Map) -> Map {
let mut new_m = Map::new(map.width, map.height);
for y in 0..map.height {
for x in 0..map.width {
// Floor's never change
if map[(x, y)] == State::Floor {
new_m[(x, y)] = State::Floor;
continue;
}
let new_cell = match map.adjacent_count(x, y) {
0 => State::Occupied,
c if c >= 4 => State::Empty,
_ => map[(x, y)],
};
new_m[(x, y)] = new_cell;
}
}
new_m
}
fn step_solution2(map: &Map) -> Map {
let mut new_m = Map::new(map.width, map.height);
for y in 0..map.height {
for x in 0..map.width {
// Floor's never change
if map[(x, y)] == State::Floor {
new_m[(x, y)] = State::Floor;
continue;
}
let new_cell = match map.line_of_sight_count(x, y) {
0 => State::Occupied,
c if c >= 5 => State::Empty,
_ => map[(x, y)],
};
new_m[(x, y)] = new_cell;
}
}
new_m
}
#[aoc_generator(day11)]
fn parse(input: &str) -> Map {
input.parse().expect("Failed to parse map")
}
#[aoc(day11, part1)]
fn solution1(map: &Map) -> usize {
let mut prev = step_solution1(map);
let mut cur = step_solution1(&prev);
while prev != cur {
// Show map animating.
// println!("{}", cur);
prev = cur;
cur = step_solution1(&prev);
}
cur.occupied_count()
}
#[aoc(day11, part2)]
fn solution2(map: &Map) -> usize {
let mut prev = step_solution2(map);
let mut cur = step_solution2(&prev);
while prev != cur {
// Show map animating.
// println!("{}", cur);
prev = cur;
cur = step_solution2(&prev);
}
cur.occupied_count()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn index() {
let m: Map = "#.L\n.#L\n.L#".parse().expect("Failed to parse map");
assert_eq!(m[(1, 0)], State::Floor);
assert_eq!(m[(0, 1)], State::Floor);
assert_eq!(m[(0, 2)], State::Floor);
assert_eq!(m[(2, 0)], State::Empty);
assert_eq!(m[(2, 1)], State::Empty);
assert_eq!(m[(1, 2)], State::Empty);
assert_eq!(m[(0, 0)], State::Occupied);
assert_eq!(m[(1, 1)], State::Occupied);
assert_eq!(m[(2, 2)], State::Occupied);
}
#[test]
fn solution1() {
let input = r#"L.LL.LL.LL
LLLLLLL.LL
L.L.L..L..
LLLL.LL.LL
L.LL.LL.LL
L.LLLLL.LL
..L.L.....
LLLLLLLLLL
L.LLLLLL.L
L.LLLLL.LL"#
.replace(' ', "");
let steps: Vec<_> = vec![
r#"#.##.##.##
#######.##
#.#.#..#..
####.##.##
#.##.##.##
#.#####.##
..#.#.....
##########
#.######.#
#.#####.##"#,
r#"#.LL.L#.##
#LLLLLL.L#
L.L.L..L..
#LLL.LL.L#
#.LL.LL.LL
#.LLLL#.##
..L.L.....
#LLLLLLLL#
#.LLLLLL.L
#.#LLLL.##"#,
r#"#.##.L#.##
#L###LL.L#
L.#.#..#..
#L##.##.L#
#.##.LL.LL
#.###L#.##
..#.#.....
#L######L#
#.LL###L.L
#.#L###.##"#,
r#"#.#L.L#.##
#LLL#LL.L#
L.L.L..#..
#LLL.##.L#
#.LL.LL.LL
#.LL#L#.##
..L.L.....
#L#LLLL#L#
#.LLLLLL.L
#.#L#L#.##"#,
r#"#.#L.L#.##
#LLL#LL.L#
L.#.L..#..
#L##.##.L#
#.#L.LL.LL
#.#L#L#.##
..L.L.....
#L#L##L#L#
#.LLLLLL.L
#.#L#L#.##"#,
]
.iter()
// Trim whitespace that rustfmt keeps introducing.
.map(|m| m.replace(' ', ""))
.collect();
let mut m = input.parse().expect("Failed to parse map");
for (i, want_input) in steps.iter().enumerate() {
let want: Map = want_input
.parse()
.expect(&format!("Failed to parse step {}", i));
let got = step_solution1(&m);
assert_eq!(want, got, "step {}\nm {}", i, m);
m = got;
}
}
#[test]
fn line_of_sight_count() {
let test_input = vec![
(
8,
(3, 4),
r#".......#.
...#.....
.#.......
.........
..#L....#
....#....
.........
#........
...#....."#
.replace(' ', ""),
),
(
4,
(3, 0),
r#"#.L#.##.L#
#L#####.LL
L.#.#..#..
##L#.##.##
#.##.#L.##
#.#####.#L
..#.#.....
LLL####LL#
#.L#####.L
#.L####.L#"#
.replace(' ', ""),
),
(
0,
(1, 1),
r#".............
.L.L.#.#.#.#.
............."#
.replace(' ', ""),
),
(
0,
(3, 3),
r#".##.##.
#.#.#.#
##...##
...L...
##...##
#.#.#.#
.##.##."#
.replace(' ', ""),
),
];
for (want, (x, y), input) in test_input {
let m: Map = input.parse().expect("Failed to parse map data");
assert_eq!(want, m.line_of_sight_count(x, y), "map {}", m);
}
}
#[test]
fn solution2() {
let input = r#"L.LL.LL.LL
LLLLLLL.LL
L.L.L..L..
LLLL.LL.LL
L.LL.LL.LL
L.LLLLL.LL
..L.L.....
LLLLLLLLLL
L.LLLLLL.L
L.LLLLL.LL"#
.replace(' ', "");
let steps: Vec<_> = vec![
r#"#.##.##.##
#######.##
#.#.#..#..
####.##.##
#.##.##.##
#.#####.##
..#.#.....
##########
#.######.#
#.#####.##"#,
r#"#.LL.LL.L#
#LLLLLL.LL
L.L.L..L..
LLLL.LL.LL
L.LL.LL.LL
L.LLLLL.LL
..L.L.....
LLLLLLLLL#
#.LLLLLL.L
#.LLLLL.L#"#,
r#"#.L#.##.L#
#L#####.LL
L.#.#..#..
##L#.##.##
#.##.#L.##
#.#####.#L
..#.#.....
LLL####LL#
#.L#####.L
#.L####.L#"#,
r#"#.L#.L#.L#
#LLLLLL.LL
L.L.L..#..
##LL.LL.L#
L.LL.LL.L#
#.LLLLL.LL
..L.L.....
LLLLLLLLL#
#.LLLLL#.L
#.L#LL#.L#"#,
r#"#.L#.L#.L#
#LLLLLL.LL
L.L.L..#..
##L#.#L.L#
L.L#.#L.L#
#.L####.LL
..#.#.....
LLL###LLL#
#.LLLLL#.L
#.L#LL#.L#"#,
r#"#.L#.L#.L#
#LLLLLL.LL
L.L.L..#..
##L#.#L.L#
L.L#.LL.L#
#.LLLL#.LL
..#.L.....
LLL###LLL#
#.LLLLL#.L
#.L#LL#.L#"#,
]
.iter()
.map(|s| s.replace(' ', ""))
.collect();
let mut m = input.parse().expect("Failed to parse map");
for (i, want_input) in steps.iter().enumerate() {
let want: Map = want_input
.parse()
.expect(&format!("Failed to parse step {}", i));
let got = step_solution2(&m);
assert_eq!(want, got, "step {}\nm {}", i, m);
m = got;
}
}
}

291
2020/src/day12.rs Normal file
View File

@@ -0,0 +1,291 @@
//! --- Day 12: Rain Risk ---
//! Your ferry made decent progress toward the island, but the storm came in faster than anyone expected. The ferry needs to take evasive actions!
//!
//! Unfortunately, the ship's navigation computer seems to be malfunctioning; rather than giving a route directly to safety, it produced extremely circuitous instructions. When the captain uses the PA system to ask if anyone can help, you quickly volunteer.
//!
//! The navigation instructions (your puzzle input) consists of a sequence of single-character actions paired with integer input values. After staring at them for a few minutes, you work out what they probably mean:
//!
//! Action N means to move north by the given value.
//! Action S means to move south by the given value.
//! Action E means to move east by the given value.
//! Action W means to move west by the given value.
//! Action L means to turn left the given number of degrees.
//! Action R means to turn right the given number of degrees.
//! Action F means to move forward by the given value in the direction the ship is currently facing.
//! The ship starts by facing east. Only the L and R actions change the direction the ship is facing. (That is, if the ship is facing east and the next instruction is N10, the ship would move north 10 units, but would still move east if the following action were F.)
//!
//! For example:
//!
//! F10
//! N3
//! F7
//! R90
//! F11
//! These instructions would be handled as follows:
//!
//! F10 would move the ship 10 units east (because the ship starts by facing east) to east 10, north 0.
//! N3 would move the ship 3 units north to east 10, north 3.
//! F7 would move the ship another 7 units east (because the ship is still facing east) to east 17, north 3.
//! R90 would cause the ship to turn right by 90 degrees and face south; it remains at east 17, north 3.
//! F11 would move the ship 11 units south to east 17, south 8.
//! At the end of these instructions, the ship's Manhattan distance (sum of the absolute values of its east/west position and its north/south position) from its starting position is 17 + 8 = 25.
//!
//! Figure out where the navigation instructions lead. What is the Manhattan distance between that location and the ship's starting position?
//! --- Part Two ---
//! Before you can give the destination to the captain, you realize that the actual action meanings were printed on the back of the instructions the whole time.
//!
//! Almost all of the actions indicate how to move a waypoint which is relative to the ship's position:
//!
//! Action N means to move the waypoint north by the given value.
//! Action S means to move the waypoint south by the given value.
//! Action E means to move the waypoint east by the given value.
//! Action W means to move the waypoint west by the given value.
//! Action L means to rotate the waypoint around the ship left (counter-clockwise) the given number of degrees.
//! Action R means to rotate the waypoint around the ship right (clockwise) the given number of degrees.
//! Action F means to move forward to the waypoint a number of times equal to the given value.
//! The waypoint starts 10 units east and 1 unit north relative to the ship. The waypoint is relative to the ship; that is, if the ship moves, the waypoint moves with it.
//!
//! For example, using the same instructions as above:
//!
//! F10 moves the ship to the waypoint 10 times (a total of 100 units east and 10 units north), leaving the ship at east 100, north 10. The waypoint stays 10 units east and 1 unit north of the ship.
//! N3 moves the waypoint 3 units north to 10 units east and 4 units north of the ship. The ship remains at east 100, north 10.
//! F7 moves the ship to the waypoint 7 times (a total of 70 units east and 28 units north), leaving the ship at east 170, north 38. The waypoint stays 10 units east and 4 units north of the ship.
//! R90 rotates the waypoint around the ship clockwise 90 degrees, moving it to 4 units east and 10 units south of the ship. The ship remains at east 170, north 38.
//! F11 moves the ship to the waypoint 11 times (a total of 44 units east and 110 units south), leaving the ship at east 214, south 72. The waypoint stays 4 units east and 10 units south of the ship.
//! After these operations, the ship's Manhattan distance from its starting position is 214 + 72 = 286.
//!
//! Figure out where the navigation instructions actually lead. What is the Manhattan distance between that location and the ship's starting position?
use aoc_runner_derive::{aoc, aoc_generator};
#[derive(Debug, PartialEq)]
enum Action {
North(u32),
South(u32),
East(u32),
West(u32),
Right(u32),
Left(u32),
Forward(u32),
}
#[derive(Clone, Copy)]
enum Orientation {
North,
South,
East,
West,
}
impl From<i32> for Orientation {
fn from(i: i32) -> Orientation {
assert_eq!(i % 90, 0);
match ((i + 360) % 360) / 90 {
0 => Orientation::North,
1 => Orientation::East,
2 => Orientation::South,
3 => Orientation::West,
c => panic!(format!("Should never see orientation of {}", c)),
}
}
}
impl Into<i32> for Orientation {
fn into(self) -> i32 {
match self {
Orientation::North => 0,
Orientation::East => 90,
Orientation::South => 180,
Orientation::West => 270,
}
}
}
use std::str::FromStr;
impl FromStr for Action {
type Err = String;
fn from_str(s: &str) -> Result<Action, String> {
let c = s
.chars()
.nth(0)
.ok_or("Couldn't get first char".to_string())?;
let v = s[1..]
.parse::<u32>()
.map_err(|e| format!("{}: '{}'", e, s))?;
use Action::*;
Ok(match c {
'N' => North(v),
'S' => South(v),
'E' => East(v),
'W' => West(v),
'R' => Right(v),
'L' => Left(v),
'F' => Forward(v),
c => return Err(format!("Unexpected action character '{}'", c)),
})
}
}
#[aoc_generator(day12)]
fn parse(input: &str) -> Vec<Action> {
input
.split('\n')
.map(|l| l.parse().expect("Failed to parse action"))
.collect()
}
struct Waypoint {
// East is +, West is -.
x: i32,
// North is +, South is -.
y: i32,
}
struct Ship {
orientation: Orientation,
// East is +, West is -.
x: i32,
// North is +, South is -.
y: i32,
waypoint: Option<Waypoint>,
}
impl Default for Ship {
fn default() -> Self {
Ship {
orientation: Orientation::East,
x: 0,
y: 0,
waypoint: None,
}
}
}
impl Ship {
fn new(waypoint_x_offset: i32, waypoint_y_offset: i32) -> Ship {
Ship {
waypoint: Some(Waypoint {
x: waypoint_x_offset,
y: waypoint_y_offset,
}),
..Ship::default()
}
}
fn act_part1(&mut self, action: &Action) {
match action {
Action::North(v) => self.y += *v as i32,
Action::South(v) => self.y -= *v as i32,
Action::East(v) => self.x += *v as i32,
Action::West(v) => self.x -= *v as i32,
Action::Right(v) => {
self.orientation = {
let i: i32 = self.orientation.into();
(i + *v as i32).into()
}
}
Action::Left(v) => {
self.orientation = {
let i: i32 = self.orientation.into();
(i - *v as i32).into()
}
}
Action::Forward(v) => match self.orientation {
Orientation::North => self.y += *v as i32,
Orientation::South => self.y -= *v as i32,
Orientation::East => self.x += *v as i32,
Orientation::West => self.x -= *v as i32,
},
};
}
fn act_part2(&mut self, action: &Action) {
let mut wp = self.waypoint.take().unwrap();
match action {
Action::North(v) => wp.y += *v as i32,
Action::South(v) => wp.y -= *v as i32,
Action::East(v) => wp.x += *v as i32,
Action::West(v) => wp.x -= *v as i32,
Action::Right(v) => {
assert_eq!(v % 90, 0);
for _ in 0..(v / 90) {
std::mem::swap(&mut wp.x, &mut wp.y);
wp.y *= -1;
}
}
Action::Left(v) => {
assert_eq!(v % 90, 0);
for _ in 0..(v / 90) {
std::mem::swap(&mut wp.x, &mut wp.y);
wp.x *= -1;
}
}
Action::Forward(v) => {
self.x += wp.x * *v as i32;
self.y += wp.y * *v as i32;
}
};
self.waypoint = Some(wp);
}
fn act(&mut self, action: &Action) {
match self.waypoint {
None => self.act_part1(action),
Some(_) => self.act_part2(action),
};
}
fn manhattan_distance(&self) -> u32 {
(self.x.abs() + self.y.abs()) as u32
}
}
#[aoc(day12, part1)]
fn solution1(actions: &[Action]) -> u32 {
let mut s = Ship::default();
actions.iter().for_each(|a| s.act(a));
s.manhattan_distance()
}
#[aoc(day12, part2)]
fn solution2(actions: &[Action]) -> u32 {
let mut s = Ship::new(10, 1);
actions.iter().for_each(|a| s.act(a));
s.manhattan_distance()
}
#[cfg(test)]
mod tests {
use super::*;
const INPUT: &'static str = r#"F10
N3
F7
R90
F11"#;
#[test]
fn parser() {
use Action::*;
assert_eq!(
parse(INPUT),
vec![Forward(10), North(3), Forward(7), Right(90), Forward(11),]
);
}
#[test]
fn part1() {
assert_eq!(solution1(&parse(INPUT)), 17 + 8);
}
#[test]
fn part2() {
assert_eq!(solution2(&parse(INPUT)), 214 + 72);
}
}

275
2020/src/day13.rs Normal file
View File

@@ -0,0 +1,275 @@
//! --- Day 13: Shuttle Search ---
//! Your ferry can make it safely to a nearby port, but it won't get much further. When you call to book another ship, you discover that no ships embark from that port to your vacation island. You'll need to get from the port to the nearest airport.
//!
//! Fortunately, a shuttle bus service is available to bring you from the sea port to the airport! Each bus has an ID number that also indicates how often the bus leaves for the airport.
//!
//! Bus schedules are defined based on a timestamp that measures the number of minutes since some fixed reference point in the past. At timestamp 0, every bus simultaneously departed from the sea port. After that, each bus travels to the airport, then various other locations, and finally returns to the sea port to repeat its journey forever.
//!
//! The time this loop takes a particular bus is also its ID number: the bus with ID 5 departs from the sea port at timestamps 0, 5, 10, 15, and so on. The bus with ID 11 departs at 0, 11, 22, 33, and so on. If you are there when the bus departs, you can ride that bus to the airport!
//!
//! Your notes (your puzzle input) consist of two lines. The first line is your estimate of the earliest timestamp you could depart on a bus. The second line lists the bus IDs that are in service according to the shuttle company; entries that show x must be out of service, so you decide to ignore them.
//!
//! To save time once you arrive, your goal is to figure out the earliest bus you can take to the airport. (There will be exactly one such bus.)
//!
//! For example, suppose you have the following notes:
//!
//! 939
//! 7,13,x,x,59,x,31,19
//! Here, the earliest timestamp you could depart is 939, and the bus IDs in service are 7, 13, 59, 31, and 19. Near timestamp 939, these bus IDs depart at the times marked D:
//!
//! time bus 7 bus 13 bus 59 bus 31 bus 19
//! 929 . . . . .
//! 930 . . . D .
//! 931 D . . . D
//! 932 . . . . .
//! 933 . . . . .
//! 934 . . . . .
//! 935 . . . . .
//! 936 . D . . .
//! 937 . . . . .
//! 938 D . . . .
//! 939 . . . . .
//! 940 . . . . .
//! 941 . . . . .
//! 942 . . . . .
//! 943 . . . . .
//! 944 . . D . .
//! 945 D . . . .
//! 946 . . . . .
//! 947 . . . . .
//! 948 . . . . .
//! 949 . D . . .
//! The earliest bus you could take is bus ID 59. It doesn't depart until timestamp 944, so you would need to wait 944 - 939 = 5 minutes before it departs. Multiplying the bus ID by the number of minutes you'd need to wait gives 295.
//!
//! What is the ID of the earliest bus you can take to the airport multiplied by the number of minutes you'll need to wait for that bus?
//!
//! --- Part Two ---
//! The shuttle company is running a contest: one gold coin for anyone that can find the earliest timestamp such that the first bus ID departs at that time and each subsequent listed bus ID departs at that subsequent minute. (The first line in your input is no longer relevant.)
//!
//! For example, suppose you have the same list of bus IDs as above:
//!
//! 7,13,x,x,59,x,31,19
//! An x in the schedule means there are no constraints on what bus IDs must depart at that time.
//!
//! This means you are looking for the earliest timestamp (called t) such that:
//!
//! Bus ID 7 departs at timestamp t.
//! Bus ID 13 departs one minute after timestamp t.
//! There are no requirements or restrictions on departures at two or three minutes after timestamp t.
//! Bus ID 59 departs four minutes after timestamp t.
//! There are no requirements or restrictions on departures at five minutes after timestamp t.
//! Bus ID 31 departs six minutes after timestamp t.
//! Bus ID 19 departs seven minutes after timestamp t.
//! The only bus departures that matter are the listed bus IDs at their specific offsets from t. Those bus IDs can depart at other times, and other bus IDs can depart at those times. For example, in the list above, because bus ID 19 must depart seven minutes after the timestamp at which bus ID 7 departs, bus ID 7 will always also be departing with bus ID 19 at seven minutes after timestamp t.
//!
//! In this example, the earliest timestamp at which this occurs is 1068781:
//!
//! time bus 7 bus 13 bus 59 bus 31 bus 19
//! 1068773 . . . . .
//! 1068774 D . . . .
//! 1068775 . . . . .
//! 1068776 . . . . .
//! 1068777 . . . . .
//! 1068778 . . . . .
//! 1068779 . . . . .
//! 1068780 . . . . .
//! 1068781 D . . . .
//! 1068782 . D . . .
//! 1068783 . . . . .
//! 1068784 . . . . .
//! 1068785 . . D . .
//! 1068786 . . . . .
//! 1068787 . . . D .
//! 1068788 D . . . D
//! 1068789 . . . . .
//! 1068790 . . . . .
//! 1068791 . . . . .
//! 1068792 . . . . .
//! 1068793 . . . . .
//! 1068794 . . . . .
//! 1068795 D D . . .
//! 1068796 . . . . .
//! 1068797 . . . . .
//! In the above example, bus ID 7 departs at timestamp 1068788 (seven minutes after t). This is fine; the only requirement on that minute is that bus ID 19 departs then, and it does.
//!
//! Here are some other examples:
//!
//! The earliest timestamp that matches the list 17,x,13,19 is 3417.
//! 67,7,59,61 first occurs at timestamp 754018.
//! 67,x,7,59,61 first occurs at timestamp 779210.
//! 67,7,x,59,61 first occurs at timestamp 1261476.
//! 1789,37,47,1889 first occurs at timestamp 1202161486.
//! However, with so many bus IDs in your list, surely the actual earliest timestamp will be larger than 100000000000000!
//!
//! What is the earliest timestamp such that all of the listed bus IDs depart at offsets matching their positions in the list?
use aoc_runner_derive::{aoc, aoc_generator};
#[derive(Debug, Default, PartialEq)]
struct Schedule {
time: u32,
buses: Vec<u32>,
}
#[aoc_generator(day13, part1)]
fn parse1(input: &str) -> Schedule {
let mut it = input.split('\n');
let time = it
.next()
.expect("Premature EOF")
.parse()
.expect("Can't parse time");
let buses = it
.next()
.expect("Premature EOF")
.split(',')
.filter_map(|s| s.parse::<u32>().ok())
.collect();
Schedule { time, buses }
}
#[aoc(day13, part1)]
fn solution1(sch: &Schedule) -> u32 {
let (bus, next) = sch
.buses
.iter()
// Find the next bus time after sch.time.
.map(|b| (b, b * ((sch.time / b) + 1)))
// Find the earliest next bus time.
.min_by(|i1, i2| i1.1.cmp(&i2.1))
.unwrap();
bus * (next - sch.time)
}
#[derive(Copy, Clone, Debug)]
struct Departure {
bus: usize,
delay: usize,
}
#[aoc_generator(day13, part2)]
fn parse2(input: &str) -> Vec<Departure> {
let mut it = input.split('\n');
let _ = it.next().expect("Premature EOF");
it.next()
.expect("Premature EOF")
.split(',')
.enumerate()
.filter_map(|(i, s)| Some((i, s.parse::<usize>().ok()?)))
.map(|(delay, bus)| Departure { bus, delay })
.collect()
}
fn inv_mod(a: usize, m: usize) -> usize {
{
let a = a % m;
for i in 1..m {
if (a * i) % m == 1 {
return i;
}
}
}
panic!(format!("no inverse modulo found for {}^-1 % {}", a, m));
}
/// Based on http://homepages.math.uic.edu/~leon/mcs425-s08/handouts/chinese_remainder.pdf
/// a_m is a Vec with (a, m) as used in the above PDF. m are pairwise relatively prime positive
/// integers and a are any integers.
fn chinese_remainder(a_m: Vec<(usize, usize)>) -> usize {
let a: Vec<_> = a_m.iter().map(|(a, _m)| a).collect();
let m: Vec<_> = a_m.iter().map(|(_a, m)| m).collect();
let m_all = m.iter().fold(1, |acc, m| *m * acc);
let z: Vec<_> = m.iter().map(|m| m_all / *m).collect();
let y: Vec<_> = m
.iter()
.zip(z.iter())
.map(|(m, z)| inv_mod(*z, **m))
.collect();
let w: Vec<_> = y
.iter()
.zip(z.iter())
.map(|(y, z)| (*y * *z) % m_all)
.collect();
let x = a
.iter()
.zip(w.iter())
.fold(0, |acc, (a, w)| acc + (*a * *w));
x % m_all
}
#[aoc(day13, part2)]
fn solution2(sch: &[Departure]) -> usize {
let a_m: Vec<(_, _)> = sch.iter().map(|d| (d.bus - d.delay, d.bus)).collect();
chinese_remainder(a_m)
}
#[cfg(test)]
mod tests {
use super::*;
const INPUT: &'static str = r#"939
7,13,x,x,59,x,31,19"#;
#[test]
fn parsing1() {
assert_eq!(
parse1(INPUT),
Schedule {
time: 939,
buses: vec![7, 13, 59, 31, 19],
}
);
}
#[test]
fn part1() {
assert_eq!(solution1(&parse1(INPUT)), 295);
}
#[test]
fn part2() {
for (input, want) in vec![
("17,x,13,19", 3417),
("67,7,59,61", 754018),
("67,x,7,59,61", 779210),
("7,13,x,x,59,x,31,19", 1068781),
("67,7,x,59,61", 1261476),
("1789,37,47,1889", 1202161486),
] {
// Insert fake header '123\n' to make the parse2 function happy.
assert_eq!(solution2(&parse2(&format!("123\n{}", input))), want);
}
}
#[test]
fn inverse_modulo() {
assert_eq!(inv_mod(8400, 11), 8);
assert_eq!(inv_mod(7, 11), 8);
assert_eq!(inv_mod(5775, 16), 15);
assert_eq!(inv_mod(15, 16), 15);
assert_eq!(inv_mod(4400, 21), 2);
assert_eq!(inv_mod(11, 21), 2);
assert_eq!(inv_mod(3696, 25), 6);
assert_eq!(inv_mod(21, 25), 6);
assert_eq!(inv_mod(243257, 11), 4);
assert_eq!(inv_mod(3, 11), 4);
assert_eq!(inv_mod(243257, 13), 1);
}
#[test]
fn chinese_remainder_theorem() {
assert_eq!(chinese_remainder(vec![(2, 5), (3, 7)]), 17);
assert_eq!(chinese_remainder(vec![(1, 3), (4, 5), (6, 7)]), 34);
assert_eq!(chinese_remainder(vec![(3, 5), (2, 6), (4, 7)]), 158);
assert_eq!(
chinese_remainder(vec![(1, 5), (2, 7), (3, 9), (4, 11)]),
1731
);
// http://homepages.math.uic.edu/~leon/mcs425-s08/handouts/chinese_remainder.pdf
// says this answer is 51669 which doesn't check out.
assert_eq!(
chinese_remainder(vec![(6, 11), (13, 16), (9, 21), (19, 25),]),
89469
);
}
}

243
2020/src/day14.rs Normal file
View File

@@ -0,0 +1,243 @@
//! --- Day 14: Docking Data ---
//! As your ferry approaches the sea port, the captain asks for your help again. The computer system that runs this port isn't compatible with the docking program on the ferry, so the docking parameters aren't being correctly initialized in the docking program's memory.
//!
//! After a brief inspection, you discover that the sea port's computer system uses a strange bitmask system in its initialization program. Although you don't have the correct decoder chip handy, you can emulate it in software!
//!
//! The initialization program (your puzzle input) can either update the bitmask or write a value to memory. Values and memory addresses are both 36-bit unsigned integers. For example, ignoring bitmasks for a moment, a line like mem[8] = 11 would write the value 11 to memory address 8.
//!
//! The bitmask is always given as a string of 36 bits, written with the most significant bit (representing 2^35) on the left and the least significant bit (2^0, that is, the 1s bit) on the right. The current bitmask is applied to values immediately before they are written to memory: a 0 or 1 overwrites the corresponding bit in the value, while an X leaves the bit in the value unchanged.
//!
//! For example, consider the following program:
//!
//! mask = XXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXX0X
//! mem[8] = 11
//! mem[7] = 101
//! mem[8] = 0
//! This program starts by specifying a bitmask (mask = ....). The mask it specifies will overwrite two bits in every written value: the 2s bit is overwritten with 0, and the 64s bit is overwritten with 1.
//!
//! The program then attempts to write the value 11 to memory address 8. By expanding everything out to individual bits, the mask is applied as follows:
//!
//! value: 000000000000000000000000000000001011 (decimal 11)
//! mask: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXX0X
//! result: 000000000000000000000000000001001001 (decimal 73)
//! So, because of the mask, the value 73 is written to memory address 8 instead. Then, the program tries to write 101 to address 7:
//!
//! value: 000000000000000000000000000001100101 (decimal 101)
//! mask: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXX0X
//! result: 000000000000000000000000000001100101 (decimal 101)
//! This time, the mask has no effect, as the bits it overwrote were already the values the mask tried to set. Finally, the program tries to write 0 to address 8:
//!
//! value: 000000000000000000000000000000000000 (decimal 0)
//! mask: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXX0X
//! result: 000000000000000000000000000001000000 (decimal 64)
//! 64 is written to address 8 instead, overwriting the value that was there previously.
//!
//! To initialize your ferry's docking program, you need the sum of all values left in memory after the initialization program completes. (The entire 36-bit address space begins initialized to the value 0 at every address.) In the above example, only two values in memory are not zero - 101 (at address 7) and 64 (at address 8) - producing a sum of 165.
//!
//! Execute the initialization program. What is the sum of all values left in memory after it completes?
//!
//! --- Part Two ---
//! For some reason, the sea port's computer system still can't communicate with your ferry's docking program. It must be using version 2 of the decoder chip!
//!
//! A version 2 decoder chip doesn't modify the values being written at all. Instead, it acts as a memory address decoder. Immediately before a value is written to memory, each bit in the bitmask modifies the corresponding bit of the destination memory address in the following way:
//!
//! If the bitmask bit is 0, the corresponding memory address bit is unchanged.
//! If the bitmask bit is 1, the corresponding memory address bit is overwritten with 1.
//! If the bitmask bit is X, the corresponding memory address bit is floating.
//! A floating bit is not connected to anything and instead fluctuates unpredictably. In practice, this means the floating bits will take on all possible values, potentially causing many memory addresses to be written all at once!
//!
//! For example, consider the following program:
//!
//! mask = 000000000000000000000000000000X1001X
//! mem[42] = 100
//! mask = 00000000000000000000000000000000X0XX
//! mem[26] = 1
//! When this program goes to write to memory address 42, it first applies the bitmask:
//!
//! address: 000000000000000000000000000000101010 (decimal 42)
//! mask: 000000000000000000000000000000X1001X
//! result: 000000000000000000000000000000X1101X
//! After applying the mask, four bits are overwritten, three of which are different, and two of which are floating. Floating bits take on every possible combination of values; with two floating bits, four actual memory addresses are written:
//!
//! 000000000000000000000000000000011010 (decimal 26)
//! 000000000000000000000000000000011011 (decimal 27)
//! 000000000000000000000000000000111010 (decimal 58)
//! 000000000000000000000000000000111011 (decimal 59)
//! Next, the program is about to write to memory address 26 with a different bitmask:
//!
//! address: 000000000000000000000000000000011010 (decimal 26)
//! mask: 00000000000000000000000000000000X0XX
//! result: 00000000000000000000000000000001X0XX
//! This results in an address with three floating bits, causing writes to eight memory addresses:
//!
//! 000000000000000000000000000000010000 (decimal 16)
//! 000000000000000000000000000000010001 (decimal 17)
//! 000000000000000000000000000000010010 (decimal 18)
//! 000000000000000000000000000000010011 (decimal 19)
//! 000000000000000000000000000000011000 (decimal 24)
//! 000000000000000000000000000000011001 (decimal 25)
//! 000000000000000000000000000000011010 (decimal 26)
//! 000000000000000000000000000000011011 (decimal 27)
//! The entire 36-bit address space still begins initialized to the value 0 at every address, and you still need the sum of all values left in memory at the end of the program. In this example, the sum is 208.
//!
//! Execute the initialization program using an emulator for a version 2 decoder chip. What is the sum of all values left in memory after it completes?
use std::collections::HashMap;
use std::str::FromStr;
use aoc_runner_derive::aoc;
// Machine bit width.
const BIT_WITDH: u8 = 36;
#[derive(Default)]
struct Mask {
mask: usize,
value: usize,
}
impl FromStr for Mask {
type Err = ();
fn from_str(s: &str) -> Result<Mask, ()> {
let mut mask = 0;
let mut value = 0;
s.bytes().for_each(|v| match v {
b'X' => {
mask <<= 1;
mask |= 1;
value <<= 1;
}
b'1' => {
mask <<= 1;
value <<= 1;
value |= 1;
}
b'0' => {
mask <<= 1;
value <<= 1;
}
c => panic!(format!("Unhandled mask character '{}'", c)),
});
Ok(Mask { mask, value })
}
}
impl Mask {
fn apply(&self, v: usize) -> usize {
v & self.mask | self.value
}
// TODO(wathiede): make this an Iterator?
fn decode(&self, v: usize) -> Vec<usize> {
// Add decoded value with all floaters set to zero.
let mut res = vec![(v | self.value) & !self.mask];
for bit in 0..BIT_WITDH {
let set = self.mask & (1 << bit);
if set > 0 {
// Floater
let ext: Vec<_> = res.iter().map(|v| v | set).collect();
res.extend(ext);
}
}
res
}
}
use std::fmt;
impl fmt::Debug for Mask {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "mask: {:036b} value {:036b}", self.mask, self.value)
}
}
#[derive(Debug, Eq, PartialEq)]
struct Address(usize);
impl FromStr for Address {
type Err = ();
fn from_str(s: &str) -> Result<Address, ()> {
Ok(Address(
s.strip_prefix("mem[")
.ok_or(())?
.strip_suffix("]")
.ok_or(())?
.parse()
.map_err(|_| ())?,
))
}
}
#[aoc(day14, part1)]
fn solution1(input: &str) -> usize {
let mut mem: HashMap<usize, usize> = HashMap::new();
let mut mask = Mask::default();
input.split('\n').for_each(|l| {
let (cmd, arg) = l.split_at(l.find(" = ").expect("Couldn't find space wrapped ="));
let arg = &arg[3..];
match cmd {
"mask" => mask = arg.parse().expect("Couldn't parse mask"),
_ => {
let addr: Address = cmd.parse().expect("Couldn't parse address");
let val = mask.apply(arg.parse().expect("Couldn't pass arg"));
mem.insert(addr.0, val);
}
};
});
mem.values().fold(0, |acc, v| acc + v)
}
#[aoc(day14, part2)]
fn solution2(input: &str) -> usize {
let mut mem: HashMap<usize, usize> = HashMap::new();
let mut mask = Mask::default();
input.split('\n').for_each(|l| {
let (cmd, arg) = l.split_at(l.find(" = ").expect("Couldn't find space wrapped ="));
let arg = &arg[3..];
match cmd {
"mask" => mask = arg.parse().expect("Couldn't parse mask"),
_ => {
let addr: Address = cmd.parse().expect("Couldn't parse address");
let val = arg.parse().expect("Couldn't pass arg");
for dec_addr in mask.decode(addr.0) {
mem.insert(dec_addr, val);
}
}
};
});
mem.values().fold(0, |acc, v| acc + v)
}
#[cfg(test)]
mod tests {
use super::*;
const INPUT1: &'static str = r#"mask = XXXXXXXXXXXXXXXXXXXXXXXXXXXXX1XXXX0X
mem[8] = 11
mem[7] = 101
mem[8] = 0"#;
#[test]
fn test_solution1() {
assert_eq!(solution1(INPUT1), 165);
}
const INPUT2: &'static str = r#"mask = 000000000000000000000000000000X1001X
mem[42] = 100
mask = 00000000000000000000000000000000X0XX
mem[26] = 1"#;
#[test]
fn test_solution2() {
assert_eq!(solution2(INPUT2), 208);
}
#[test]
fn mask_decode() {
let m: Mask = "000000000000000000000000000000X1001X".parse().unwrap();
assert_eq!(m.decode(42), vec![26, 27, 58, 59]);
let m: Mask = "00000000000000000000000000000000X0XX".parse().unwrap();
assert_eq!(m.decode(26), vec![16, 17, 18, 19, 24, 25, 26, 27]);
}
}

167
2020/src/day15.rs Normal file
View File

@@ -0,0 +1,167 @@
//! --- Day 15: Rambunctious Recitation ---
//! You catch the airport shuttle and try to book a new flight to your vacation island. Due to the storm, all direct flights have been cancelled, but a route is available to get around the storm. You take it.
//!
//! While you wait for your flight, you decide to check in with the Elves back at the North Pole. They're playing a memory game and are ever so excited to explain the rules!
//!
//! In this game, the players take turns saying numbers. They begin by taking turns reading from a list of starting numbers (your puzzle input). Then, each turn consists of considering the most recently spoken number:
//!
//! If that was the first time the number has been spoken, the current player says 0.
//! Otherwise, the number had been spoken before; the current player announces how many turns apart the number is from when it was previously spoken.
//! So, after the starting numbers, each turn results in that player speaking aloud either 0 (if the last number is new) or an age (if the last number is a repeat).
//!
//! For example, suppose the starting numbers are 0,3,6:
//!
//! Turn 1: The 1st number spoken is a starting number, 0.
//! Turn 2: The 2nd number spoken is a starting number, 3.
//! Turn 3: The 3rd number spoken is a starting number, 6.
//! Turn 4: Now, consider the last number spoken, 6. Since that was the first time the number had been spoken, the 4th number spoken is 0.
//! Turn 5: Next, again consider the last number spoken, 0. Since it had been spoken before, the next number to speak is the difference between the turn number when it was last spoken (the previous turn, 4) and the turn number of the time it was most recently spoken before then (turn 1). Thus, the 5th number spoken is 4 - 1, 3.
//! Turn 6: The last number spoken, 3 had also been spoken before, most recently on turns 5 and 2. So, the 6th number spoken is 5 - 2, 3.
//! Turn 7: Since 3 was just spoken twice in a row, and the last two turns are 1 turn apart, the 7th number spoken is 1.
//! Turn 8: Since 1 is new, the 8th number spoken is 0.
//! Turn 9: 0 was last spoken on turns 8 and 4, so the 9th number spoken is the difference between them, 4.
//! Turn 10: 4 is new, so the 10th number spoken is 0.
//! (The game ends when the Elves get sick of playing or dinner is ready, whichever comes first.)
//!
//! Their question for you is: what will be the 2020th number spoken? In the example above, the 2020th number spoken will be 436.
//!
//! Here are a few more examples:
//!
//! Given the starting numbers 1,3,2, the 2020th number spoken is 1.
//! Given the starting numbers 2,1,3, the 2020th number spoken is 10.
//! Given the starting numbers 1,2,3, the 2020th number spoken is 27.
//! Given the starting numbers 2,3,1, the 2020th number spoken is 78.
//! Given the starting numbers 3,2,1, the 2020th number spoken is 438.
//! Given the starting numbers 3,1,2, the 2020th number spoken is 1836.
//! Given your starting numbers, what will be the 2020th number spoken?
//!
//! --- Part Two ---
//! Impressed, the Elves issue you a challenge: determine the 30000000th number spoken. For example, given the same starting numbers as above:
//!
//! Given 0,3,6, the 30000000th number spoken is 175594.
//! Given 1,3,2, the 30000000th number spoken is 2578.
//! Given 2,1,3, the 30000000th number spoken is 3544142.
//! Given 1,2,3, the 30000000th number spoken is 261214.
//! Given 2,3,1, the 30000000th number spoken is 6895259.
//! Given 3,2,1, the 30000000th number spoken is 18.
//! Given 3,1,2, the 30000000th number spoken is 362.
//! Given your starting numbers, what will be the 30000000th number spoken?
use aoc_runner_derive::aoc;
#[aoc(day15, part1)]
fn solution1(input: &str) -> usize {
const ANSWER_IDX: usize = 2020;
let mut history = Vec::with_capacity(ANSWER_IDX);
input
.split(',')
.map(|s| s.parse().expect("couldn't parse number"))
.for_each(|n| history.push(n));
let mut last = history[history.len() - 1];
(history.len()..ANSWER_IDX).for_each(|i| {
// Search backwards for the last number seen. If it's not found, we append 0 to history.
// If it's found, we append the distance.
let next = match history[..i - 1]
.iter()
.rev()
.enumerate()
.skip_while(|(_i, v)| **v != last)
.map(|(i, _v)| i)
.nth(0)
{
None => 0,
Some(i) => i + 1,
};
history.push(next);
last = next;
});
history[ANSWER_IDX - 1]
}
#[aoc(day15, part2)]
fn solution2(input: &str) -> usize {
const ANSWER_IDX: usize = 30000000;
solution2_impl(input, ANSWER_IDX)
}
use std::collections::HashMap;
fn solution2_impl(input: &str, idx: usize) -> usize {
let starter: Vec<_> = input
.split(',')
.map(|s| s.parse().expect("couldn't parse number"))
.collect();
let mut history: HashMap<usize, usize> = starter
.into_iter()
.enumerate()
.map(|(i, n)| (n, i))
.collect();
let mut last = 0;
let mut spoken = 0;
(history.len()..idx).for_each(|i| {
match history.get_mut(&spoken) {
Some(entry) => {
last = spoken;
spoken = i - *entry;
*entry = i;
}
None => {
last = spoken;
history.insert(spoken, i);
spoken = 0;
}
};
});
last
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_solution1() {
for (input, want) in vec![
("1,3,2", 1),
("2,1,3", 10),
("1,2,3", 27),
("2,3,1", 78),
("3,2,1", 438),
("3,1,2", 1836),
] {
assert_eq!(solution1(input), want);
}
}
#[test]
fn test_solution2_impl() {
for (input, want) in vec![
("0,3,6", 436),
("1,3,2", 1),
("2,1,3", 10),
("1,2,3", 27),
("2,3,1", 78),
("3,2,1", 438),
("3,1,2", 1836),
] {
assert_eq!(solution2_impl(input, 2020), want);
}
}
// This is slow
// #[test]
// fn test_solution2() {
// for (input, want) in vec![
// //("0,3,6", 175594),
// ("1,3,2", 2578),
// ("2,1,3", 3544142),
// ("1,2,3", 261214),
// ("2,3,1", 6895259),
// ("3,2,1", 18),
// ("3,1,2", 362),
// ] {
// assert_eq!(solution2(input), want);
// }
// }
}

365
2020/src/day16.rs Normal file
View File

@@ -0,0 +1,365 @@
//! --- Day 16: Ticket Translation ---
//! As you're walking to yet another connecting flight, you realize that one of the legs of your re-routed trip coming up is on a high-speed train. However, the train ticket you were given is in a language you don't understand. You should probably figure out what it says before you get to the train station after the next flight.
//!
//! Unfortunately, you can't actually read the words on the ticket. You can, however, read the numbers, and so you figure out the fields these tickets must have and the valid ranges for values in those fields.
//!
//! You collect the rules for ticket fields, the numbers on your ticket, and the numbers on other nearby tickets for the same train service (via the airport security cameras) together into a single document you can reference (your puzzle input).
//!
//! The rules for ticket fields specify a list of fields that exist somewhere on the ticket and the valid ranges of values for each field. For example, a rule like class: 1-3 or 5-7 means that one of the fields in every ticket is named class and can be any value in the ranges 1-3 or 5-7 (inclusive, such that 3 and 5 are both valid in this field, but 4 is not).
//!
//! Each ticket is represented by a single line of comma-separated values. The values are the numbers on the ticket in the order they appear; every ticket has the same format. For example, consider this ticket:
//!
//! .--------------------------------------------------------.
//! | ????: 101 ?????: 102 ??????????: 103 ???: 104 |
//! | |
//! | ??: 301 ??: 302 ???????: 303 ??????? |
//! | ??: 401 ??: 402 ???? ????: 403 ????????? |
//! '--------------------------------------------------------'
//! Here, ? represents text in a language you don't understand. This ticket might be represented as 101,102,103,104,301,302,303,401,402,403; of course, the actual train tickets you're looking at are much more complicated. In any case, you've extracted just the numbers in such a way that the first number is always the same specific field, the second number is always a different specific field, and so on - you just don't know what each position actually means!
//!
//! Start by determining which tickets are completely invalid; these are tickets that contain values which aren't valid for any field. Ignore your ticket for now.
//!
//! For example, suppose you have the following notes:
//!
//! class: 1-3 or 5-7
//! row: 6-11 or 33-44
//! seat: 13-40 or 45-50
//!
//! your ticket:
//! 7,1,14
//!
//! nearby tickets:
//! 7,3,47
//! 40,4,50
//! 55,2,20
//! 38,6,12
//! It doesn't matter which position corresponds to which field; you can identify invalid nearby tickets by considering only whether tickets contain values that are not valid for any field. In this example, the values on the first nearby ticket are all valid for at least one field. This is not true of the other three nearby tickets: the values 4, 55, and 12 are are not valid for any field. Adding together all of the invalid values produces your ticket scanning error rate: 4 + 55 + 12 = 71.
//!
//! Consider the validity of the nearby tickets you scanned. What is your ticket scanning error rate?
//!
//! --- Part Two ---
//! Now that you've identified which tickets contain invalid values, discard those tickets entirely. Use the remaining valid tickets to determine which field is which.
//!
//! Using the valid ranges for each field, determine what order the fields appear on the tickets. The order is consistent between all tickets: if seat is the third field, it is the third field on every ticket, including your ticket.
//!
//! For example, suppose you have the following notes:
//!
//! class: 0-1 or 4-19
//! row: 0-5 or 8-19
//! seat: 0-13 or 16-19
//!
//! your ticket:
//! 11,12,13
//!
//! nearby tickets:
//! 3,9,18
//! 15,1,5
//! 5,14,9
//! Based on the nearby tickets in the above example, the first position must be row, the second position must be class, and the third position must be seat; you can conclude that in your ticket, class is 12, row is 11, and seat is 13.
//!
//! Once you work out which field is which, look for the six fields on your ticket that start with the word departure. What do you get if you multiply those six values together?
use std::collections::HashMap;
use std::ops::Range;
use std::str::FromStr;
use aoc_runner_derive::{aoc, aoc_generator};
#[derive(Debug, PartialEq)]
struct Rule {
name: String,
low: Range<usize>,
high: Range<usize>,
}
/// Parses "2-4" into Range(2..5).
fn from_range(s: &str) -> Result<Range<usize>, String> {
let mut it = s.split('-');
let low = it
.next()
.ok_or("low range".to_string())?
.parse()
.map_err(|e| format!("{}", e))?;
let high = it
.next()
.ok_or("high range".to_string())?
.parse::<usize>()
.map_err(|e| format!("{}", e))?;
Ok(low..high + 1)
}
impl FromStr for Rule {
type Err = String;
fn from_str(s: &str) -> Result<Rule, String> {
let c_idx = s.find(":").expect("missing :");
let name = s[..c_idx].to_string();
let mut it = s[c_idx + 2..].split(' ');
let low = from_range(it.next().ok_or("get low")?)?;
let _ = it.next().ok_or("missing 'or'".to_string())?;
let high = from_range(it.next().ok_or("get high")?)?;
Ok(Rule { name, low, high })
}
}
#[derive(Debug, PartialEq)]
struct Ticket {
nums: Vec<usize>,
}
impl FromStr for Ticket {
type Err = String;
fn from_str(s: &str) -> Result<Ticket, String> {
Ok(Ticket {
nums: s
.split(',')
.map(|s| s.parse().map_err(|e| format!("{}", e)))
.collect::<Result<Vec<_>, String>>()?,
})
}
}
fn reduce_possibilities(possibilities: HashMap<usize, Vec<String>>) -> HashMap<usize, String> {
let mut p = possibilities.clone();
let mut uniq = HashMap::new();
loop {
let mut rm = Vec::new();
// Extract all the columns with only one possible answer.
p.iter().for_each(|(k, v)| {
if v.len() == 1 {
let word = v[0].to_string();
rm.push(word.to_string());
uniq.insert(*k, word);
}
});
// Remove all the assigned columns from columns that have multiple possibilities.
p = p
.into_iter()
.filter_map(|(k, v)| {
let v: Vec<_> = v.into_iter().filter(|w| !rm.contains(w)).collect();
if v.is_empty() {
None
} else {
Some((k, v))
}
})
.collect();
if p.is_empty() {
break;
}
}
uniq
}
#[derive(Debug, PartialEq)]
struct Notes {
rules: Vec<Rule>,
my: Ticket,
nearby: Vec<Ticket>,
}
impl Notes {
fn valid(&self, n: usize) -> bool {
for r in &self.rules {
if r.low.contains(&n) || r.high.contains(&n) {
return true;
}
}
false
}
fn valid_ticket(&self, t: &Ticket) -> bool {
t.nums.iter().all(|n| self.valid(*n))
}
fn invalid_nums(&self, t: &Ticket) -> Vec<usize> {
t.nums
.iter()
.filter(|n| !self.valid(**n))
.cloned()
.collect()
}
fn valid_column<'a, I>(&self, idx: usize, mut tickets: I, r: &Rule) -> bool
where
I: Iterator<Item = &'a &'a Ticket>,
{
tickets.all(|t| r.low.contains(&t.nums[idx]) || r.high.contains(&t.nums[idx]))
}
/// translate will apply `rules` to all valid tickets to compute which column maps to each
/// rule.
fn translate(&self) -> HashMap<String, usize> {
let valid_tickets: Vec<_> = self
.nearby
.iter()
.filter(|t| self.valid_ticket(t))
.collect();
use std::iter::once;
let possibilities: HashMap<_, _> = (0..self.my.nums.len())
.map(|i| {
let possible = self
.rules
.iter()
.filter(|r| {
self.valid_column(i, once(&&self.my).chain(valid_tickets.iter()), r)
})
.map(|r| r.name.to_string())
.collect::<Vec<_>>();
(i, possible)
})
.collect();
reduce_possibilities(possibilities)
.into_iter()
.map(|(i, name)| (name, i))
.collect()
}
}
#[aoc_generator(day16)]
fn parse1(input: &str) -> Notes {
let mut it = input.split("\n\n");
let rules: Vec<Rule> = it
.next()
.expect("EOF1")
.split('\n')
.map(|l| l.parse().expect("rules"))
.collect();
let my: Ticket = it
.next()
.expect("EOF2")
.split('\n')
.skip(1)
.nth(0)
.map(|l| l.parse().expect("my parse"))
.expect("my");
let nearby: Vec<Ticket> = it
.next()
.expect("EOF3")
.split('\n')
.skip(1)
.map(|l| l.parse().expect("rules"))
.collect();
Notes { rules, my, nearby }
}
#[aoc(day16, part1)]
fn solution1(notes: &Notes) -> usize {
notes
.nearby
.iter()
.flat_map(|t| notes.invalid_nums(t))
.sum()
}
#[aoc(day16, part2)]
fn solution2(notes: &Notes) -> usize {
let t = notes.translate();
let idxs: Vec<_> = t
.iter()
.filter_map(|(k, v)| {
if k.starts_with("departure") {
Some(v)
} else {
None
}
})
.collect();
idxs.into_iter().map(|i| notes.my.nums[*i]).product()
}
#[cfg(test)]
mod tests {
use super::*;
const INPUT1: &'static str = r#"class: 1-3 or 5-7
row: 6-11 or 33-44
seat: 13-40 or 45-50
your ticket:
7,1,14
nearby tickets:
7,3,47
40,4,50
55,2,20
38,6,12"#;
#[test]
fn test_parse1() {
assert_eq!(
parse1(INPUT1),
Notes {
rules: vec![
Rule {
name: "class".to_string(),
low: 1..4,
high: 5..8,
},
Rule {
name: "row".to_string(),
low: 6..12,
high: 33..45,
},
Rule {
name: "seat".to_string(),
low: 13..41,
high: 45..51,
},
],
my: Ticket {
nums: vec![7, 1, 14],
},
nearby: vec![
Ticket {
nums: vec![7, 3, 47]
},
Ticket {
nums: vec![40, 4, 50]
},
Ticket {
nums: vec![55, 2, 20]
},
Ticket {
nums: vec![38, 6, 12]
},
],
}
);
}
#[test]
fn test_solution1() {
assert_eq!(solution1(&parse1(INPUT1)), 4 + 55 + 12);
}
const INPUT2: &'static str = r#"class: 0-1 or 4-19
row: 0-5 or 8-19
seat: 0-13 or 16-19
your ticket:
11,12,13
nearby tickets:
3,9,18
15,1,5
5,14,9"#;
#[test]
fn translate() {
let notes = parse1(&INPUT2);
assert_eq!(
notes.translate(),
vec![
("class".to_string(), 1),
("row".to_string(), 0),
("seat".to_string(), 2),
]
.into_iter()
.collect::<HashMap<String, usize>>()
);
}
}

813
2020/src/day17.rs Normal file
View File

@@ -0,0 +1,813 @@
//! --- Day 17: Conway Cubes ---
//! As your flight slowly drifts through the sky, the Elves at the Mythical Information Bureau at the North Pole contact you. They'd like some help debugging a malfunctioning experimental energy source aboard one of their super-secret imaging satellites.
//!
//! The experimental energy source is based on cutting-edge technology: a set of Conway Cubes contained in a pocket dimension! When you hear it's having problems, you can't help but agree to take a look.
//!
//! The pocket dimension contains an infinite 3-dimensional grid. At every integer 3-dimensional coordinate (x,y,z), there exists a single cube which is either active or inactive.
//!
//! In the initial state of the pocket dimension, almost all cubes start inactive. The only exception to this is a small flat region of cubes (your puzzle input); the cubes in this region start in the specified active (#) or inactive (.) state.
//!
//! The energy source then proceeds to boot up by executing six cycles.
//!
//! Each cube only ever considers its neighbors: any of the 26 other cubes where any of their coordinates differ by at most 1. For example, given the cube at x=1,y=2,z=3, its neighbors include the cube at x=2,y=2,z=2, the cube at x=0,y=2,z=3, and so on.
//!
//! During a cycle, all cubes simultaneously change their state according to the following rules:
//!
//! If a cube is active and exactly 2 or 3 of its neighbors are also active, the cube remains active. Otherwise, the cube becomes inactive.
//! If a cube is inactive but exactly 3 of its neighbors are active, the cube becomes active. Otherwise, the cube remains inactive.
//! The engineers responsible for this experimental energy source would like you to simulate the pocket dimension and determine what the configuration of cubes should be at the end of the six-cycle boot process.
//!
//! For example, consider the following initial state:
//!
//! .#.
//! ..#
//! ###
//! Even though the pocket dimension is 3-dimensional, this initial state represents a small 2-dimensional slice of it. (In particular, this initial state defines a 3x3x1 region of the 3-dimensional space.)
//!
//! Simulating a few cycles from this initial state produces the following configurations, where the result of each cycle is shown layer-by-layer at each given z coordinate (and the frame of view follows the active cells in each cycle):
//!
//! Before any cycles:
//!
//! z=0
//! .#.
//! ..#
//! ###
//!
//!
//! After 1 cycle:
//!
//! z=-1
//! #..
//! ..#
//! .#.
//!
//! z=0
//! #.#
//! .##
//! .#.
//!
//! z=1
//! #..
//! ..#
//! .#.
//!
//!
//! After 2 cycles:
//!
//! z=-2
//! .....
//! .....
//! ..#..
//! .....
//! .....
//!
//! z=-1
//! ..#..
//! .#..#
//! ....#
//! .#...
//! .....
//!
//! z=0
//! ##...
//! ##...
//! #....
//! ....#
//! .###.
//!
//! z=1
//! ..#..
//! .#..#
//! ....#
//! .#...
//! .....
//!
//! z=2
//! .....
//! .....
//! ..#..
//! .....
//! .....
//!
//!
//! After 3 cycles:
//!
//! z=-2
//! .......
//! .......
//! ..##...
//! ..###..
//! .......
//! .......
//! .......
//!
//! z=-1
//! ..#....
//! ...#...
//! #......
//! .....##
//! .#...#.
//! ..#.#..
//! ...#...
//!
//! z=0
//! ...#...
//! .......
//! #......
//! .......
//! .....##
//! .##.#..
//! ...#...
//!
//! z=1
//! ..#....
//! ...#...
//! #......
//! .....##
//! .#...#.
//! ..#.#..
//! ...#...
//!
//! z=2
//! .......
//! .......
//! ..##...
//! ..###..
//! .......
//! .......
//! .......
//! After the full six-cycle boot process completes, 112 cubes are left in the active state.
//!
//! Starting with your given initial configuration, simulate six cycles. How many cubes are left in the active state after the sixth cycle?
//! --- Part Two ---
//! For some reason, your simulated results don't match what the experimental energy source engineers expected. Apparently, the pocket dimension actually has four spatial dimensions, not three.
//!
//! The pocket dimension contains an infinite 4-dimensional grid. At every integer 4-dimensional coordinate (x,y,z,w), there exists a single cube (really, a hypercube) which is still either active or inactive.
//!
//! Each cube only ever considers its neighbors: any of the 80 other cubes where any of their coordinates differ by at most 1. For example, given the cube at x=1,y=2,z=3,w=4, its neighbors include the cube at x=2,y=2,z=3,w=3, the cube at x=0,y=2,z=3,w=4, and so on.
//!
//! The initial state of the pocket dimension still consists of a small flat region of cubes. Furthermore, the same rules for cycle updating still apply: during each cycle, consider the number of active neighbors of each cube.
//!
//! For example, consider the same initial state as in the example above. Even though the pocket dimension is 4-dimensional, this initial state represents a small 2-dimensional slice of it. (In particular, this initial state defines a 3x3x1x1 region of the 4-dimensional space.)
//!
//! Simulating a few cycles from this initial state produces the following configurations, where the result of each cycle is shown layer-by-layer at each given z and w coordinate:
//!
//! Before any cycles:
//!
//! z=0, w=0
//! .#.
//! ..#
//! ###
//!
//!
//! After 1 cycle:
//!
//! z=-1, w=-1
//! #..
//! ..#
//! .#.
//!
//! z=0, w=-1
//! #..
//! ..#
//! .#.
//!
//! z=1, w=-1
//! #..
//! ..#
//! .#.
//!
//! z=-1, w=0
//! #..
//! ..#
//! .#.
//!
//! z=0, w=0
//! #.#
//! .##
//! .#.
//!
//! z=1, w=0
//! #..
//! ..#
//! .#.
//!
//! z=-1, w=1
//! #..
//! ..#
//! .#.
//!
//! z=0, w=1
//! #..
//! ..#
//! .#.
//!
//! z=1, w=1
//! #..
//! ..#
//! .#.
//!
//!
//! After 2 cycles:
//!
//! z=-2, w=-2
//! .....
//! .....
//! ..#..
//! .....
//! .....
//!
//! z=-1, w=-2
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=0, w=-2
//! ###..
//! ##.##
//! #...#
//! .#..#
//! .###.
//!
//! z=1, w=-2
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=2, w=-2
//! .....
//! .....
//! ..#..
//! .....
//! .....
//!
//! z=-2, w=-1
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=-1, w=-1
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=0, w=-1
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=1, w=-1
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=2, w=-1
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=-2, w=0
//! ###..
//! ##.##
//! #...#
//! .#..#
//! .###.
//!
//! z=-1, w=0
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=0, w=0
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=1, w=0
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=2, w=0
//! ###..
//! ##.##
//! #...#
//! .#..#
//! .###.
//!
//! z=-2, w=1
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=-1, w=1
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=0, w=1
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=1, w=1
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=2, w=1
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=-2, w=2
//! .....
//! .....
//! ..#..
//! .....
//! .....
//!
//! z=-1, w=2
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=0, w=2
//! ###..
//! ##.##
//! #...#
//! .#..#
//! .###.
//!
//! z=1, w=2
//! .....
//! .....
//! .....
//! .....
//! .....
//!
//! z=2, w=2
//! .....
//! .....
//! ..#..
//! .....
//! .....
//! After the full six-cycle boot process completes, 848 cubes are left in the active state.
//!
//! Starting with your given initial configuration, simulate six cycles in a 4-dimensional space. How many cubes are left in the active state after the sixth cycle?
use std::fmt;
use aoc_runner_derive::{aoc, aoc_generator};
#[repr(u8)]
#[derive(Copy, Clone, PartialEq)]
enum Cube {
Active = b'#',
Inactive = b'.',
}
impl fmt::Debug for Cube {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"{}",
match self {
Cube::Active => '#',
Cube::Inactive => '.',
}
)
}
}
#[derive(Default, Clone)]
struct Universe<T> {
cells: Vec<T>,
x_len: usize,
y_len: usize,
z_len: usize,
w_len: usize,
default: T,
}
impl<T> Universe<T> {
fn dimensions(&self) -> String {
let u = &self;
format!("{}x{}x{}x{}", u.x_len, u.y_len, u.z_len, u.w_len)
}
}
impl<T> fmt::Debug for Universe<T>
where
T: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}\n", self.dimensions())?;
let u = &self;
for w in 0..u.w_len {
for z in 0..u.z_len {
let hdr = format!(
"z={}, w={}",
z as isize - u.z_len as isize / 2,
w as isize - u.w_len as isize / 2
);
write!(f, "{:width$} | ", hdr, width = u.x_len)?;
}
write!(f, "\n")?;
for y in 0..u.y_len {
for z in 0..u.z_len {
for x in 0..u.x_len {
write!(f, "{:?}", u[(x, y, z, w)])?;
}
write!(f, " | ")?;
}
write!(f, "\n")?;
}
write!(f, "\n")?;
}
write!(f, "\n")?;
Ok(())
}
}
use std::ops::{Index, IndexMut};
impl<T> IndexMut<(usize, usize, usize, usize)> for Universe<T> {
fn index_mut(&mut self, (x, y, z, w): (usize, usize, usize, usize)) -> &mut Self::Output {
if x >= self.x_len || y >= self.y_len || z > self.z_len || w > self.w_len {
panic!(format!(
"index_mut outside of bounds ({},{},{},{})",
x, y, z, w
));
}
&mut self.cells[x
+ y * self.y_len
+ z * self.x_len * self.y_len
+ w * self.x_len * self.y_len * self.z_len]
}
}
impl<T> Index<(usize, usize, usize, usize)> for Universe<T> {
type Output = T;
/// Returns the value in 4-space given by x,y,z,w. Values outside the active space this Universe covers will return the default for T;
fn index(&self, (x, y, z, w): (usize, usize, usize, usize)) -> &Self::Output {
if x >= self.x_len || y >= self.y_len || z > self.z_len || w > self.w_len {
return &self.default;
}
&self.cells[x
+ y * self.y_len
+ z * self.x_len * self.y_len
+ w * self.x_len * self.y_len * self.z_len]
}
}
impl<T> Index<(isize, isize, isize, isize)> for Universe<T> {
type Output = T;
/// Returns the value in 4-space given by x,y,z,w. Values outside the active space this Universe covers will return self.default;
fn index(&self, (x, y, z, w): (isize, isize, isize, isize)) -> &Self::Output {
if x < 0 || y < 0 || z < 0 || w < 0 {
return &self.default;
}
let x_len = self.x_len as isize;
let y_len = self.y_len as isize;
let z_len = self.z_len as isize;
let w_len = self.w_len as isize;
if x >= x_len || y >= y_len || z >= z_len || w >= w_len {
return &self.default;
}
&self.cells[(x + y * y_len + z * x_len * y_len + w * x_len * y_len * z_len) as usize]
}
}
#[derive(Clone)]
struct PocketDimension {
universe: Universe<Cube>,
}
impl std::str::FromStr for PocketDimension {
type Err = ();
fn from_str(s: &str) -> Result<PocketDimension, ()> {
let mut cells = Vec::new();
let z_layers: Vec<_> = s.split("\n\n").collect();
let z_len = z_layers.len();
let mut x_len = 0;
let mut y_len = 0;
z_layers.iter().for_each(|layer| {
let rows: Vec<_> = layer.split('\n').map(|s| s.trim()).collect();
y_len = rows.len();
rows.iter().for_each(|row| {
x_len = row.len();
// TODO(wathiede): Is there something better here given we're using an enum with a
// repr(u8)?
cells.extend(row.bytes().filter(|c| c != &b'\n').map(|c| match c {
b'#' => Cube::Active,
b'.' => Cube::Inactive,
c => panic!(format!("Unknown state '{}'", c)),
}));
});
});
let universe = Universe {
cells,
x_len,
y_len,
z_len,
w_len: 1,
default: Cube::Inactive,
};
Ok(PocketDimension { universe })
}
}
impl fmt::Debug for PocketDimension {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self.universe)
}
}
impl PocketDimension {
/// Applies the rules of the puzzle one iteration and returns a new PocketDimension
/// representing the new state.
fn step(&self, expand_w: bool) -> PocketDimension {
let u = &self.universe;
let x_len = u.x_len as isize;
let y_len = u.y_len as isize;
let z_len = u.z_len as isize;
let w_len = u.w_len as isize;
let (new_w_len, w_range, w_off) = if expand_w {
(u.w_len + 2, -1..w_len + 1, 1)
} else {
(u.w_len, 0..w_len, 0)
};
let mut counts = Universe::<usize> {
x_len: u.x_len + 2,
y_len: u.y_len + 2,
z_len: u.z_len + 2,
w_len: new_w_len,
cells: vec![0; (u.x_len + 2) * (u.y_len + 2) * (u.z_len + 2) * (new_w_len)],
default: 0,
};
let mut universe = Universe::<Cube> {
x_len: u.x_len + 2,
y_len: u.y_len + 2,
z_len: u.z_len + 2,
w_len: new_w_len,
cells: vec![
Cube::Inactive;
(u.x_len + 2) * (u.y_len + 2) * (u.z_len + 2) * (new_w_len)
],
default: Cube::Inactive,
};
for w in w_range {
for z in -1..z_len + 1 {
for y in -1..y_len + 1 {
for x in -1..x_len + 1 {
let adj = self.adjacency((x, y, z, w));
let dst = (
(x + 1) as usize,
(y + 1) as usize,
(z + 1) as usize,
(w + w_off) as usize,
);
counts[dst] = adj;
match self.universe[(x, y, z, w)] {
Cube::Active => {
if adj == 2 || adj == 3 {
universe[dst] = Cube::Active;
} else {
universe[dst] = Cube::Inactive;
}
}
Cube::Inactive => {
if adj == 3 {
universe[dst] = Cube::Active;
}
}
};
}
}
}
}
//dbg!(&counts, &universe);
PocketDimension { universe }
}
fn active(&self) -> usize {
self.universe
.cells
.iter()
.filter(|c| c == &&Cube::Active)
.count()
}
/// Counts active neighbors.
fn adjacency(&self, (x, y, z, w): (isize, isize, isize, isize)) -> usize {
let mut sum = 0;
for w_off in -1..=1 {
for z_off in -1..=1 {
for y_off in -1..=1 {
for x_off in -1..=1 {
if x_off == 0 && y_off == 0 && z_off == 0 && w_off == 0 {
// Skip the requested cell
continue;
}
if self.universe[(x + x_off, y + y_off, z + z_off, w + w_off)]
== Cube::Active
{
sum += 1;
}
}
}
}
}
sum
}
}
#[aoc_generator(day17)]
fn generator(input: &str) -> PocketDimension {
input.parse().expect("Couldn't parse initial state")
}
#[aoc(day17, part1)]
fn solution1(pd: &PocketDimension) -> usize {
(0..6).fold(pd.clone(), |acc, _| acc.step(false)).active()
}
#[aoc(day17, part2)]
fn solution2(pd: &PocketDimension) -> usize {
(0..6).fold(pd.clone(), |acc, _| acc.step(true)).active()
}
#[cfg(test)]
mod tests {
use super::*;
const INPUT1: &'static str = r#".#.
..#
###"#;
const STEPS1: &'static str = r#".#.
..#
###
#..
..#
.#.
#.#
.##
.#.
#..
..#
.#.
.....
.....
..#..
.....
.....
..#..
.#..#
....#
.#...
.....
##...
##...
#....
....#
.###.
..#..
.#..#
....#
.#...
.....
.....
.....
..#..
.....
.....
.......
.......
..##...
..###..
.......
.......
.......
..#....
...#...
#......
.....##
.#...#.
..#.#..
...#...
...#...
.......
#......
.......
.....##
.##.#..
...#...
..#....
...#...
#......
.....##
.#...#.
..#.#..
...#...
.......
.......
..##...
..###..
.......
.......
......."#;
#[test]
fn parse_and_count() {
for (idx, ((input, active), dimensions)) in STEPS1
.split("\n\n\n")
.zip(vec![5, 11, 21, 38])
.zip(vec!["3x3x1x1", "3x3x3x1", "5x5x5x1", "7x7x5x1"])
.enumerate()
{
let pd = generator(input);
assert_eq!(pd.active(), active);
assert_eq!(
pd.universe.dimensions(),
dimensions,
"idx {}: {:?}",
idx,
pd,
);
}
}
#[test]
fn part1() {
assert_eq!(solution1(&generator(INPUT1)), 112);
}
#[test]
fn step_exand_w() {
let pd = generator(INPUT1);
assert_eq!(pd.active(), 5);
let pd = pd.step(true);
assert_eq!(pd.active(), 29);
let pd = pd.step(true);
assert_eq!(pd.active(), 60);
}
#[test]
fn part2() {
assert_eq!(solution2(&generator(INPUT1)), 848);
}
}

339
2020/src/day18.rs Normal file
View File

@@ -0,0 +1,339 @@
//! --- Day 18: Operation Order ---
//! As you look out the window and notice a heavily-forested continent slowly appear over the horizon, you are interrupted by the child sitting next to you. They're curious if you could help them with their math homework.
//!
//! Unfortunately, it seems like this "math" follows different rules than you remember.
//!
//! The homework (your puzzle input) consists of a series of expressions that consist of addition (+), multiplication (*), and parentheses ((...)). Just like normal math, parentheses indicate that the expression inside must be evaluated before it can be used by the surrounding expression. Addition still finds the sum of the numbers on both sides of the operator, and multiplication still finds the product.
//!
//! However, the rules of operator precedence have changed. Rather than evaluating multiplication before addition, the operators have the same precedence, and are evaluated left-to-right regardless of the order in which they appear.
//!
//! For example, the steps to evaluate the expression 1 + 2 * 3 + 4 * 5 + 6 are as follows:
//!
//! 1 + 2 * 3 + 4 * 5 + 6
//! 3 * 3 + 4 * 5 + 6
//! 9 + 4 * 5 + 6
//! 13 * 5 + 6
//! 65 + 6
//! 71
//! Parentheses can override this order; for example, here is what happens if parentheses are added to form 1 + (2 * 3) + (4 * (5 + 6)):
//!
//! 1 + (2 * 3) + (4 * (5 + 6))
//! 1 + 6 + (4 * (5 + 6))
//! 7 + (4 * (5 + 6))
//! 7 + (4 * 11 )
//! 7 + 44
//! 51
//! Here are a few more examples:
//!
//! 2 * 3 + (4 * 5) becomes 26.
//! 5 + (8 * 3 + 9 + 3 * 4 * 3) becomes 437.
//! 5 * 9 * (7 * 3 * 3 + 9 * 3 + (8 + 6 * 4)) becomes 12240.
//! ((2 + 4 * 9) * (6 + 9 * 8 + 6) + 6) + 2 + 4 * 2 becomes 13632.
//! Before you can help with the homework, you need to understand it yourself. Evaluate the expression on each line of the homework; what is the sum of the resulting values?
use aoc_runner_derive::{aoc, aoc_generator};
#[derive(Clone, Copy, Debug, PartialEq)]
enum Token {
Num(u32),
Add,
Mul,
Open,
Close,
Space,
}
#[derive(Debug, PartialEq)]
enum Ast {
Add(Box<Ast>, Box<Ast>),
Mul(Box<Ast>, Box<Ast>),
Num(u32),
}
fn eval(ast: &Ast) -> u32 {
0
}
#[derive(Copy, Clone, Default, PartialEq)]
struct NodeId(usize);
impl fmt::Debug for NodeId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "NodeId({})", self.0)
}
}
#[derive(Debug, Default)]
struct Node {
parent: Option<NodeId>,
data: Option<Token>,
left: Option<NodeId>,
right: Option<NodeId>,
}
impl Node {
fn set_left_child(&mut self, id: Option<NodeId>) -> Option<NodeId> {
let old = self.left;
self.left = id;
old
}
fn set_right_child(&mut self, id: Option<NodeId>) -> Option<NodeId> {
let old = self.right;
self.right = id;
old
}
}
#[derive(Debug)]
struct Tree {
nodes: Vec<Node>,
root: NodeId,
}
use std::fmt;
impl fmt::Display for Tree {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fn print_node(f: &mut fmt::Formatter<'_>, tree: &Tree, id: NodeId) -> fmt::Result {
//dbg!(id, tree.get_node(id));
match tree.get_node(id).data {
None => (),
Some(Token::Num(n)) => write!(f, "{}", n)?,
Some(Token::Add) => {
print_node(f, tree, tree.get_node(id).left.unwrap())?;
write!(f, "+",)?;
print_node(f, tree, tree.get_node(id).right.unwrap())?;
}
Some(Token::Mul) => {
print_node(f, tree, tree.get_node(id).left.unwrap())?;
write!(f, "*",)?;
print_node(f, tree, tree.get_node(id).right.unwrap())?;
}
Some(Token::Open) => {
write!(f, "(",)?;
}
Some(Token::Close) => {
write!(f, ")",)?;
}
Some(Token::Space) => {
write!(f, " ",)?;
}
};
Ok(())
}
print_node(f, self, self.root)
}
}
impl Default for Tree {
fn default() -> Tree {
Tree {
nodes: vec![Node::default()],
root: NodeId(0),
}
}
}
impl Tree {
fn get_node(&self, id: NodeId) -> &Node {
&self.nodes[id.0]
}
fn get_node_mut(&mut self, id: NodeId) -> &mut Node {
&mut self.nodes[id.0]
}
fn add_node(&mut self, n: Node) -> NodeId {
self.nodes.push(n);
NodeId(self.nodes.len() - 1)
}
}
#[derive(Debug, Default)]
struct Parser {
tree: Tree,
cur: NodeId,
debug_tokens: Vec<Token>,
}
impl Parser {
fn add_left_child_cur(&mut self, mut n: Node) -> NodeId {
n.parent = Some(self.cur);
let id = self.tree.add_node(n);
self.cur_node_mut().left = Some(id);
id
}
fn add_right_child_cur(&mut self, mut n: Node) -> NodeId {
n.parent = Some(self.cur);
let id = self.tree.add_node(n);
self.cur_node_mut().right = Some(id);
id
}
fn cur_node_mut(&mut self) -> &mut Node {
self.tree.get_node_mut(self.cur)
}
fn cur_node(&self) -> &Node {
self.tree.get_node(self.cur)
}
fn set_cur_data(&mut self, t: &Token) {
let cur = self.cur_node();
let cur_id = self.cur;
if cur.data.is_some() {
match cur.right {
Some(node) => {
// Create a new node, stick it in `right` and reparent the previous node.
let id = self.tree.add_node(Node {
parent: Some(self.cur),
..Node::default()
});
self.set_cur_node(id);
self.tree.get_node_mut(cur_id).right = Some(id);
self.cur_node_mut().left = Some(node);
}
None => {
let id = self.add_right_child_cur(Node::default());
self.set_cur_node(id);
}
};
}
self.cur_node_mut().data = Some(*t);
}
fn set_cur_node(&mut self, id: NodeId) {
assert_ne!(Some(self.cur), self.cur_node().parent);
self.cur = id;
}
fn set_cur_to_parent(&mut self) {
match self.cur_node().parent {
Some(parent) => self.set_cur_node(parent),
None => {
let id = self.tree.add_node(Node::default());
self.cur_node_mut().parent = Some(id);
let old_id = self.cur;
self.tree.root = id;
self.set_cur_node(id);
self.cur_node_mut().left = Some(old_id);
}
}
}
fn add_token(&mut self, t: &Token) {
//TODO(wathiede): we seem to be building the tree backwards so that walking the tree works
// right-to-left instead of left-to-right.
self.debug_tokens.push(*t);
match t {
Token::Num(_) => {
self.set_cur_data(t);
self.set_cur_to_parent();
}
Token::Add => {
self.set_cur_data(t);
let id = self.add_right_child_cur(Node::default());
self.cur = id;
}
Token::Mul => {
//dbg!(&self);
self.set_cur_data(t);
let id = self.add_right_child_cur(Node::default());
self.cur = id;
}
Token::Open => {
let id = self.add_left_child_cur(Node::default());
self.cur = id;
}
Token::Close => self.set_cur_to_parent(),
Token::Space => unreachable!("spaces should be filtered"),
};
}
fn eval(&self) -> u32 {
dbg!(&self.debug_tokens);
dbg!(format!("{}", self.tree));
fn eval_inner(tree: &Tree, id: NodeId) -> u32 {
match tree.get_node(id).data {
None => panic!("empty node"),
Some(Token::Num(n)) => n,
Some(Token::Add) => {
let l = eval_inner(tree, tree.get_node(id).left.unwrap());
let r = eval_inner(tree, tree.get_node(id).right.unwrap());
dbg!(l, r);
dbg!(l + r)
}
Some(Token::Mul) => {
let l = eval_inner(tree, tree.get_node(id).left.unwrap());
let r = eval_inner(tree, tree.get_node(id).right.unwrap());
dbg!(l, r);
dbg!(l * r)
}
Some(Token::Open) => panic!("("),
Some(Token::Close) => panic!(")"),
Some(Token::Space) => panic!(" "),
}
}
eval_inner(&self.tree, self.tree.root)
}
}
#[aoc_generator(day18)]
fn generator(input: &str) -> Vec<Vec<Token>> {
input.split('\n').map(lex).collect()
}
fn lex(input: &str) -> Vec<Token> {
input
.bytes()
.map(|b| match b {
b'(' => Token::Open,
b')' => Token::Close,
b'+' => Token::Add,
b'*' => Token::Mul,
b' ' => Token::Space,
c @ b'0'..=b'9' => Token::Num((c - b'0') as u32),
c => panic!(format!("unexpected char '{:?}'", c)),
})
// Ignore spaces
.filter(|t| t != &Token::Space)
.collect()
}
fn parse(tokens: &[Token]) -> u32 {
let mut p = Parser::default();
dbg!(&p);
tokens.into_iter().for_each(|t| p.add_token(t));
p.eval()
}
#[aoc(day18, part1)]
fn solution1(tokens_list: &[Vec<Token>]) -> u32 {
tokens_list.iter().map(|tokens| parse(tokens)).sum()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_lex() {
let tokens = vec![
Token::Num(2),
Token::Mul,
Token::Num(3),
Token::Add,
Token::Open,
Token::Num(4),
Token::Mul,
Token::Num(5),
Token::Close,
];
assert_eq!(lex("2 * 3 + (4 * 5)"), tokens);
}
#[test]
fn part1() {
for (input, want) in vec![
("1 + 2 * 3 + 4 * 5 + 6", 71),
("2 * 3 + (4 * 5)", 26),
("5 + (8 * 3 + 9 + 3 * 4 * 3)", 437),
("5 * 9 * (7 * 3 * 3 + 9 * 3 + (8 + 6 * 4))", 12240),
("((2 + 4 * 9) * (6 + 9 * 8 + 6) + 6) + 2 + 4 * 2", 13632),
] {
dbg!(&input);
assert_eq!(parse(&lex(input)), want, "{}", input);
}
}
}

245
2020/src/day19.rs Normal file
View File

@@ -0,0 +1,245 @@
//! --- Day 19: Monster Messages ---
//! You land in an airport surrounded by dense forest. As you walk to your high-speed train, the Elves at the Mythical Information Bureau contact you again. They think their satellite has collected an image of a sea monster! Unfortunately, the connection to the satellite is having problems, and many of the messages sent back from the satellite have been corrupted.
//!
//! They sent you a list of the rules valid messages should obey and a list of received messages they've collected so far (your puzzle input).
//!
//! The rules for valid messages (the top part of your puzzle input) are numbered and build upon each other. For example:
//!
//! 0: 1 2
//! 1: "a"
//! 2: 1 3 | 3 1
//! 3: "b"
//! Some rules, like 3: "b", simply match a single character (in this case, b).
//!
//! The remaining rules list the sub-rules that must be followed; for example, the rule 0: 1 2 means that to match rule 0, the text being checked must match rule 1, and the text after the part that matched rule 1 must then match rule 2.
//!
//! Some of the rules have multiple lists of sub-rules separated by a pipe (|). This means that at least one list of sub-rules must match. (The ones that match might be different each time the rule is encountered.) For example, the rule 2: 1 3 | 3 1 means that to match rule 2, the text being checked must match rule 1 followed by rule 3 or it must match rule 3 followed by rule 1.
//!
//! Fortunately, there are no loops in the rules, so the list of possible matches will be finite. Since rule 1 matches a and rule 3 matches b, rule 2 matches either ab or ba. Therefore, rule 0 matches aab or aba.
//!
//! Here's a more interesting example:
//!
//! 0: 4 1 5
//! 1: 2 3 | 3 2
//! 2: 4 4 | 5 5
//! 3: 4 5 | 5 4
//! 4: "a"
//! 5: "b"
//! Here, because rule 4 matches a and rule 5 matches b, rule 2 matches two letters that are the same (aa or bb), and rule 3 matches two letters that are different (ab or ba).
//!
//! Since rule 1 matches rules 2 and 3 once each in either order, it must match two pairs of letters, one pair with matching letters and one pair with different letters. This leaves eight possibilities: aaab, aaba, bbab, bbba, abaa, abbb, baaa, or babb.
//!
//! Rule 0, therefore, matches a (rule 4), then any of the eight options from rule 1, then b (rule 5): aaaabb, aaabab, abbabb, abbbab, aabaab, aabbbb, abaaab, or ababbb.
//!
//! The received messages (the bottom part of your puzzle input) need to be checked against the rules so you can determine which are valid and which are corrupted. Including the rules and the messages together, this might look like:
//!
//! 0: 4 1 5
//! 1: 2 3 | 3 2
//! 2: 4 4 | 5 5
//! 3: 4 5 | 5 4
//! 4: "a"
//! 5: "b"
//!
//! ababbb
//! bababa
//! abbbab
//! aaabbb
//! aaaabbb
//! Your goal is to determine the number of messages that completely match rule 0. In the above example, ababbb and abbbab match, but bababa, aaabbb, and aaaabbb do not, producing the answer 2. The whole message must match all of rule 0; there can't be extra unmatched characters in the message. (For example, aaaabbb might appear to match rule 0 above, but it has an extra unmatched b on the end.)
//!
//! How many messages completely match rule 0?
use std::collections::HashMap;
use std::fmt;
use aoc_runner_derive::{aoc, aoc_generator};
use regex::Regex;
#[derive(Debug)]
struct Input {
rules: Regex,
messages: Vec<String>,
}
impl PartialEq for Input {
fn eq(&self, other: &Self) -> bool {
self.rules.as_str() == other.rules.as_str() && self.messages == other.messages
}
}
#[derive(Clone, Eq, PartialEq, Hash)]
enum Entry {
Rule(usize),
Char(String),
}
impl fmt::Debug for Entry {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Entry::Rule(n) => write!(f, "Entry({})", n)?,
Entry::Char(c) => write!(f, r#"Entry("{}")"#, c)?,
}
Ok(())
}
}
struct Resolver {
rule_map: HashMap<usize, Vec<Vec<Entry>>>,
resolved: HashMap<Entry, String>,
}
impl Resolver {
fn resolve(&mut self, e: &Entry) -> String {
if let Some(v) = self.resolved.get(e) {
return v.to_string();
}
match e {
Entry::Char(s) => {
self.resolved.insert(e.clone(), s.to_string());
s.to_string()
}
Entry::Rule(n) => {
let subrules: Vec<String> = self.rule_map[n]
// TODO(wathiede): clone here seems inefficient, but it made the borrow checker
// happy given the &mut recursive call to self.resolve in the map closure.
.clone()
.iter()
.map(|rule| {
let letters: Vec<_> = rule.iter().map(|e| self.resolve(e)).collect();
letters.join("")
})
.collect();
let s = subrules.join("|");
if subrules.len() > 1 {
// More than one rule,
return format!("({})", s);
}
s
}
}
}
}
fn expand_rulemap(rule_map: HashMap<usize, Vec<Vec<Entry>>>) -> Regex {
let mut r = Resolver {
rule_map,
resolved: HashMap::new(),
};
let rule_zero = r.rule_map[&0][0].clone();
let re = rule_zero
.iter()
.fold("".to_string(), |acc, e| format!("{}{}", acc, r.resolve(e)));
Regex::new(&format!(r"^{}$", re)).unwrap()
}
fn make_rules(lines: Vec<String>) -> Regex {
let mut rules = HashMap::new();
lines.iter().for_each(|l| {
let idx = l.find(':').expect("missing ':'");
let k: usize = l[..idx].parse().expect("failed to parse number");
let sub: Vec<Vec<Entry>> = l[idx + 2..]
.split(" | ")
.map(|sub| {
sub.split(' ')
.map(|p| match p.parse() {
Ok(n) => Entry::Rule(n),
Err(_) => Entry::Char(
p.strip_prefix("\"")
.unwrap()
.strip_suffix("\"")
.unwrap()
.to_string(),
),
})
.collect()
})
.collect();
rules.insert(k, sub);
});
expand_rulemap(rules)
}
#[aoc_generator(day19)]
fn generator(input: &str) -> Input {
let mut it = input.split("\n\n");
let rules = make_rules(
it.next()
.unwrap()
.split('\n')
.map(|s| s.trim().to_string())
.collect(),
);
let messages = it
.next()
.unwrap()
.split('\n')
.map(|s| s.trim().to_string())
.collect();
Input { rules, messages }
}
#[aoc(day19, part1)]
fn solution1(input: &Input) -> usize {
input
.messages
.iter()
.filter(|msg| input.rules.is_match(msg))
.count()
}
#[cfg(test)]
mod tests {
use super::*;
const INPUT: &'static str = r#"0: 4 1 5
1: 2 3 | 3 2
2: 4 4 | 5 5
3: 4 5 | 5 4
4: "a"
5: "b"
ababbb
bababa
abbbab
aaabbb
aaaabbb"#;
#[test]
fn part1() {
assert_eq!(solution1(&generator(INPUT)), 2);
}
#[test]
fn parse() {
assert_eq!(
generator(INPUT),
Input {
rules: Regex::new("^a((aa|bb)(ab|ba)|(ab|ba)(aa|bb))b$").unwrap(),
messages: vec!["ababbb", "bababa", "abbbab", "aaabbb", "aaaabbb",]
.into_iter()
.map(|s| s.to_string())
.collect(),
}
);
}
#[test]
fn expand() {
use Entry::*;
let r: HashMap<usize, Vec<Vec<Entry>>> = vec![
vec![vec![Rule(1)]],
vec![vec![Rule(2), Rule(2)], vec![Rule(3), Rule(3)]],
vec![vec![Char("a".to_string())]],
vec![vec![Char("b".to_string())]],
]
.into_iter()
.enumerate()
.collect();
assert_eq!(
expand_rulemap(r).as_str(),
Regex::new("^(aa|bb)$").unwrap().as_str()
);
}
}

View File

@@ -43,47 +43,54 @@ struct Policy {
password: String,
}
fn parse_regex<'a>(input: &'a str) -> impl Iterator<Item = Policy> + 'a {
#[aoc_generator(day2)]
fn parse_regex(input: &str) -> Vec<Policy> {
let re = Regex::new(r"(\d+)-(\d+) (\w): (.*)").expect("Failed to compile regex");
input
.split('\n')
.filter_map(move |line| match re.captures(line) {
Some(caps) => Some(Policy {
.filter(|line| re.is_match(line))
.map(|line| {
let caps = re.captures(line).expect("Failed to match pattern");
Policy {
min: caps.get(1).unwrap().as_str().parse().unwrap(),
max: caps.get(2).unwrap().as_str().parse().unwrap(),
letter: caps.get(3).unwrap().as_str().to_string(),
password: caps.get(4).unwrap().as_str().to_string(),
}),
None => None,
}
})
.collect()
}
fn parse_handrolled<'a>(input: &'a str) -> impl Iterator<Item = Policy> + 'a {
#[aoc_generator(day2, part1, handrolled)]
fn parse_handrolled(input: &str) -> Vec<Policy> {
// Example line:
// 1-3 a: abcde
input.split('\n').filter_map(|line| {
let start = 0;
let end = line.find('-')?;
let min: usize = line[start..end].parse().ok()?;
input
.split('\n')
.filter_map(|line| {
let start = 0;
let end = line.find('-')?;
let min: usize = line[start..end].parse().ok()?;
let start = end + 1;
let end = line.find(' ')?;
let max: usize = line[start..end].parse().ok()?;
let start = end + 1;
let end = line.find(' ')?;
let max: usize = line[start..end].parse().ok()?;
let start = end + 1;
let end = line.find(':')?;
let letter = line[start..end].to_string();
let start = end + 1;
let end = line.find(':')?;
let letter = line[start..end].to_string();
let start = end + 2;
let password = line[start..].to_string();
let start = end + 2;
let password = line[start..].to_string();
Some(Policy {
min,
max,
letter,
password,
Some(Policy {
min,
max,
letter,
password,
})
})
})
.collect()
}
fn is_valid_policy_part1(p: &Policy) -> bool {
@@ -92,15 +99,13 @@ fn is_valid_policy_part1(p: &Policy) -> bool {
}
#[aoc(day2, part1)]
fn valid_policy_count_part1(input: &str) -> usize {
let policies = parse_regex(input);
policies.filter(|p| is_valid_policy_part1(p)).count()
fn valid_policy_count_part1(policies: &[Policy]) -> usize {
policies.iter().filter(|p| is_valid_policy_part1(p)).count()
}
#[aoc(day2, part1, handrolled)]
fn valid_policy_count_handrolled_part1(input: &str) -> usize {
let policies = parse_handrolled(input);
policies.filter(|p| is_valid_policy_part1(p)).count()
fn valid_policy_count_handrolled_part1(policies: &[Policy]) -> usize {
policies.iter().filter(|p| is_valid_policy_part1(p)).count()
}
fn is_valid_policy_part2(p: &Policy) -> bool {
@@ -114,9 +119,8 @@ fn is_valid_policy_part2(p: &Policy) -> bool {
}
#[aoc(day2, part2)]
fn valid_policy_count_part2(input: &str) -> usize {
let policies = parse_regex(input);
policies.filter(|p| is_valid_policy_part2(p)).count()
fn valid_policy_count_part2(policies: &[Policy]) -> usize {
policies.iter().filter(|p| is_valid_policy_part2(p)).count()
}
#[cfg(test)]
@@ -150,17 +154,17 @@ mod tests {
password: "ccccccccc".to_string(),
},
];
assert_eq!(parse_regex(INPUT).collect::<Vec<Policy>>(), want);
assert_eq!(parse_handrolled(INPUT).collect::<Vec<Policy>>(), want);
assert_eq!(parse_regex(INPUT), want);
assert_eq!(parse_handrolled(INPUT), want);
}
#[test]
fn validate_count_part1() {
assert_eq!(valid_policy_count_part1(INPUT), 2);
assert_eq!(valid_policy_count_part1(&parse_regex(INPUT)), 2);
}
#[test]
fn validate_count_part2() {
assert_eq!(valid_policy_count_part2(INPUT), 1);
assert_eq!(valid_policy_count_part2(&parse_regex(INPUT)), 1);
}
}

365
2020/src/day4.rs Normal file
View File

@@ -0,0 +1,365 @@
//! --- Day 4: Passport Processing ---
//! You arrive at the airport only to realize that you grabbed your North Pole Credentials instead of your passport. While these documents are extremely similar, North Pole Credentials aren't issued by a country and therefore aren't actually valid documentation for travel in most of the world.
//!
//! It seems like you're not the only one having problems, though; a very long line has formed for the automatic passport scanners, and the delay could upset your travel itinerary.
//!
//! Due to some questionable network security, you realize you might be able to solve both of these problems at the same time.
//!
//! The automatic passport scanners are slow because they're having trouble detecting which passports have all required fields. The expected fields are as follows:
//!
//! byr (Birth Year)
//! iyr (Issue Year)
//! eyr (Expiration Year)
//! hgt (Height)
//! hcl (Hair Color)
//! ecl (Eye Color)
//! pid (Passport ID)
//! cid (Country ID)
//! Passport data is validated in batch files (your puzzle input). Each passport is represented as a sequence of key:value pairs separated by spaces or newlines. Passports are separated by blank lines.
//!
//! Here is an example batch file containing four passports:
//!
//! ecl:gry pid:860033327 eyr:2020 hcl:#fffffd
//! byr:1937 iyr:2017 cid:147 hgt:183cm
//!
//! iyr:2013 ecl:amb cid:350 eyr:2023 pid:028048884
//! hcl:#cfa07d byr:1929
//!
//! hcl:#ae17e1 iyr:2013
//! eyr:2024
//! ecl:brn pid:760753108 byr:1931
//! hgt:179cm
//!
//! hcl:#cfa07d eyr:2025 pid:166559648
//! iyr:2011 ecl:brn hgt:59in
//! The first passport is valid - all eight fields are present. The second passport is invalid - it is missing hgt (the Height field).
//!
//! The third passport is interesting; the only missing field is cid, so it looks like data from North Pole Credentials, not a passport at all! Surely, nobody would mind if you made the system temporarily ignore missing cid fields. Treat this "passport" as valid.
//!
//! The fourth passport is missing two fields, cid and byr. Missing cid is fine, but missing any other field is not, so this passport is invalid.
//!
//! According to the above rules, your improved system would report 2 valid passports.
//!
//! Count the number of valid passports - those that have all required fields. Treat cid as optional. In your batch file, how many passports are valid?
//!
//! --- Part Two ---
//! The line is moving more quickly now, but you overhear airport security talking about how passports with invalid data are getting through. Better add some data validation, quick!
//!
//! You can continue to ignore the cid field, but each other field has strict rules about what values are valid for automatic validation:
//!
//! byr (Birth Year) - four digits; at least 1920 and at most 2002.
//! iyr (Issue Year) - four digits; at least 2010 and at most 2020.
//! eyr (Expiration Year) - four digits; at least 2020 and at most 2030.
//! hgt (Height) - a number followed by either cm or in:
//! If cm, the number must be at least 150 and at most 193.
//! If in, the number must be at least 59 and at most 76.
//! hcl (Hair Color) - a # followed by exactly six characters 0-9 or a-f.
//! ecl (Eye Color) - exactly one of: amb blu brn gry grn hzl oth.
//! pid (Passport ID) - a nine-digit number, including leading zeroes.
//! cid (Country ID) - ignored, missing or not.
//! Your job is to count the passports where all required fields are both present and valid according to the above rules. Here are some example values:
//!
//! byr valid: 2002
//! byr invalid: 2003
//!
//! hgt valid: 60in
//! hgt valid: 190cm
//! hgt invalid: 190in
//! hgt invalid: 190
//!
//! hcl valid: #123abc
//! hcl invalid: #123abz
//! hcl invalid: 123abc
//!
//! ecl valid: brn
//! ecl invalid: wat
//!
//! pid valid: 000000001
//! pid invalid: 0123456789
//! Here are some invalid passports:
//!
//! eyr:1972 cid:100
//! hcl:#18171d ecl:amb hgt:170 pid:186cm iyr:2018 byr:1926
//!
//! iyr:2019
//! hcl:#602927 eyr:1967 hgt:170cm
//! ecl:grn pid:012533040 byr:1946
//!
//! hcl:dab227 iyr:2012
//! ecl:brn hgt:182cm pid:021572410 eyr:2020 byr:1992 cid:277
//!
//! hgt:59cm ecl:zzz
//! eyr:2038 hcl:74454a iyr:2023
//! pid:3556412378 byr:2007
//! Here are some valid passports:
//!
//! pid:087499704 hgt:74in ecl:grn iyr:2012 eyr:2030 byr:1980
//! hcl:#623a2f
//!
//! eyr:2029 ecl:blu cid:129 byr:1989
//! iyr:2014 pid:896056539 hcl:#a97842 hgt:165cm
//!
//! hcl:#888785
//! hgt:164cm byr:2001 iyr:2015 cid:88
//! pid:545766238 ecl:hzl
//! eyr:2022
//!
//! iyr:2010 hgt:158cm hcl:#b6652a ecl:blu byr:1944 eyr:2021 pid:093154719
//! Count the number of valid passports - those that have all required fields and valid values. Continue to treat cid as optional. In your batch file, how many passports are valid?
use std::str::FromStr;
use aoc_runner_derive::{aoc, aoc_generator};
#[derive(Debug, Default, PartialEq)]
struct Passport {
// Birth Year
byr: Option<String>,
// Issue Year
iyr: Option<String>,
// Expiration Year
eyr: Option<String>,
// Height
hgt: Option<String>,
// Hair Color
hcl: Option<String>,
// Eye Color
ecl: Option<String>,
// Passport ID
pid: Option<String>,
// Country ID
cid: Option<String>,
}
fn valid_num(s: &Option<String>, min: u32, max: u32) -> bool {
match s {
Some(yr) => match yr.parse() {
Ok(n) => min <= n && n <= max,
Err(_) => false,
},
None => false,
}
}
fn valid_height(s: &Option<String>) -> bool {
if let Some(h) = s {
if h.ends_with("cm") {
return valid_num(&Some(h[..h.len() - 2].to_string()), 150, 193);
};
if h.ends_with("in") {
return valid_num(&Some(h[..h.len() - 2].to_string()), 59, 76);
};
}
false
}
fn valid_hair_color(s: &Option<String>) -> bool {
if let Some(h) = s {
let chars: Vec<_> = h.chars().collect();
if chars.len() != 7 {
return false;
}
for c in &chars[1..] {
if &'0' <= c && c <= &'f' {
continue;
}
}
return true;
}
false
}
fn valid_eye_color(s: &Option<String>) -> bool {
if let Some(c) = s {
return match c.as_str() {
"amb" | "blu" | "brn" | "gry" | "grn" | "hzl" | "oth" => true,
_ => false,
};
}
false
}
fn valid_passport_id(s: &Option<String>) -> bool {
if let Some(pid) = s {
if pid.len() != 9 {
return false;
}
for c in pid.chars() {
if '0' <= c && c <= '9' {
continue;
}
}
return true;
}
false
}
impl Passport {
fn is_valid_part1(&self) -> bool {
self.byr.is_some()
&& self.iyr.is_some()
&& self.eyr.is_some()
&& self.hgt.is_some()
&& self.hcl.is_some()
&& self.ecl.is_some()
&& self.pid.is_some()
}
fn is_valid_part2(&self) -> bool {
valid_num(&self.byr, 1920, 2002)
&& valid_num(&self.iyr, 2010, 2020)
&& valid_num(&self.eyr, 2020, 2030)
&& valid_height(&self.hgt)
&& valid_hair_color(&self.hcl)
&& valid_eye_color(&self.ecl)
&& valid_passport_id(&self.pid)
}
}
impl FromStr for Passport {
type Err = ();
fn from_str(input: &str) -> Result<Passport, ()> {
let mut p = Passport::default();
input
.replace('\n', " ")
.split(' ')
.filter(|p| !p.is_empty())
.for_each(|part| {
let (k, v) = part.split_at(part.find(":").unwrap());
match k {
"byr" => p.byr = Some(v[1..].to_string()),
"iyr" => p.iyr = Some(v[1..].to_string()),
"eyr" => p.eyr = Some(v[1..].to_string()),
"hgt" => p.hgt = Some(v[1..].to_string()),
"hcl" => p.hcl = Some(v[1..].to_string()),
"ecl" => p.ecl = Some(v[1..].to_string()),
"pid" => p.pid = Some(v[1..].to_string()),
"cid" => p.cid = Some(v[1..].to_string()),
s => panic!(format!("unknown key: '{}'", s)),
};
});
Ok(p)
}
}
#[aoc_generator(day4)]
fn parse(input: &str) -> Vec<Passport> {
input.split("\n\n").filter_map(|s| s.parse().ok()).collect()
}
#[aoc(day4, part1)]
fn solution_part1(passports: &[Passport]) -> usize {
passports.iter().filter(|p| p.is_valid_part1()).count()
}
#[aoc(day4, part2)]
fn solution_part2(passports: &[Passport]) -> usize {
passports.iter().filter(|p| p.is_valid_part2()).count()
}
#[cfg(test)]
mod tests {
use super::*;
const INPUT: &'static str = r##"ecl:gry pid:860033327 eyr:2020 hcl:#fffffd
byr:1937 iyr:2017 cid:147 hgt:183cm
iyr:2013 ecl:amb cid:350 eyr:2023 pid:028048884
hcl:#cfa07d byr:1929
hcl:#ae17e1 iyr:2013
eyr:2024
ecl:brn pid:760753108 byr:1931
hgt:179cm
hcl:#cfa07d eyr:2025 pid:166559648
iyr:2011 ecl:brn hgt:59in
"##;
#[test]
fn parse_passports() {
assert_eq!(
parse(INPUT),
vec![
Passport {
ecl: Some("gry".to_string()),
pid: Some("860033327".to_string()),
eyr: Some("2020".to_string()),
hcl: Some("#fffffd".to_string()),
byr: Some("1937".to_string()),
iyr: Some("2017".to_string()),
cid: Some("147".to_string()),
hgt: Some("183cm".to_string()),
},
Passport {
iyr: Some("2013".to_string()),
ecl: Some("amb".to_string()),
cid: Some("350".to_string()),
eyr: Some("2023".to_string()),
pid: Some("028048884".to_string()),
hcl: Some("#cfa07d".to_string()),
byr: Some("1929".to_string()),
..Default::default()
},
Passport {
hcl: Some("#ae17e1".to_string()),
iyr: Some("2013".to_string()),
eyr: Some("2024".to_string()),
ecl: Some("brn".to_string()),
pid: Some("760753108".to_string()),
byr: Some("1931".to_string()),
hgt: Some("179cm".to_string()),
..Default::default()
},
Passport {
hcl: Some("#cfa07d".to_string()),
eyr: Some("2025".to_string()),
pid: Some("166559648".to_string()),
iyr: Some("2011".to_string()),
ecl: Some("brn".to_string()),
hgt: Some("59in".to_string()),
..Default::default()
},
]
);
}
#[test]
fn invalid_part2() {
let input = r##"eyr:1972 cid:100
hcl:#18171d ecl:amb hgt:170 pid:186cm iyr:2018 byr:1926
iyr:2019
hcl:#602927 eyr:1967 hgt:170cm
ecl:grn pid:012533040 byr:1946
hcl:dab227 iyr:2012
ecl:brn hgt:182cm pid:021572410 eyr:2020 byr:1992 cid:277
hgt:59cm ecl:zzz
eyr:2038 hcl:74454a iyr:2023
pid:3556412378 byr:2007
"##;
assert_eq!(solution_part2(&parse(input)), 0);
}
#[test]
fn valid_part2() {
let input = r##"pid:087499704 hgt:74in ecl:grn iyr:2012 eyr:2030 byr:1980
hcl:#623a2f
eyr:2029 ecl:blu cid:129 byr:1989
iyr:2014 pid:896056539 hcl:#a97842 hgt:165cm
hcl:#888785
hgt:164cm byr:2001 iyr:2015 cid:88
pid:545766238 ecl:hzl
eyr:2022
iyr:2010 hgt:158cm hcl:#b6652a ecl:blu byr:1944 eyr:2021 pid:093154719
"##;
assert_eq!(solution_part2(&parse(input)), 4);
}
}

166
2020/src/day5.rs Normal file
View File

@@ -0,0 +1,166 @@
//! --- Day 5: Binary Boarding ---
//! You board your plane only to discover a new problem: you dropped your boarding pass! You aren't sure which seat is yours, and all of the flight attendants are busy with the flood of people that suddenly made it through passport control.
//!
//! You write a quick program to use your phone's camera to scan all of the nearby boarding passes (your puzzle input); perhaps you can find your seat through process of elimination.
//!
//! Instead of zones or groups, this airline uses binary space partitioning to seat people. A seat might be specified like FBFBBFFRLR, where F means "front", B means "back", L means "left", and R means "right".
//!
//! The first 7 characters will either be F or B; these specify exactly one of the 128 rows on the plane (numbered 0 through 127). Each letter tells you which half of a region the given seat is in. Start with the whole list of rows; the first letter indicates whether the seat is in the front (0 through 63) or the back (64 through 127). The next letter indicates which half of that region the seat is in, and so on until you're left with exactly one row.
//!
//! For example, consider just the first seven characters of FBFBBFFRLR:
//!
//! Start by considering the whole range, rows 0 through 127.
//! F means to take the lower half, keeping rows 0 through 63.
//! B means to take the upper half, keeping rows 32 through 63.
//! F means to take the lower half, keeping rows 32 through 47.
//! B means to take the upper half, keeping rows 40 through 47.
//! B keeps rows 44 through 47.
//! F keeps rows 44 through 45.
//! The final F keeps the lower of the two, row 44.
//! The last three characters will be either L or R; these specify exactly one of the 8 columns of seats on the plane (numbered 0 through 7). The same process as above proceeds again, this time with only three steps. L means to keep the lower half, while R means to keep the upper half.
//!
//! For example, consider just the last 3 characters of FBFBBFFRLR:
//!
//! Start by considering the whole range, columns 0 through 7.
//! R means to take the upper half, keeping columns 4 through 7.
//! L means to take the lower half, keeping columns 4 through 5.
//! The final R keeps the upper of the two, column 5.
//! So, decoding FBFBBFFRLR reveals that it is the seat at row 44, column 5.
//!
//! Every seat also has a unique seat ID: multiply the row by 8, then add the column. In this example, the seat has ID 44 * 8 + 5 = 357.
//!
//! Here are some other boarding passes:
//!
//! BFFFBBFRRR: row 70, column 7, seat ID 567.
//! FFFBBBFRRR: row 14, column 7, seat ID 119.
//! BBFFBBFRLL: row 102, column 4, seat ID 820.
//! As a sanity check, look through your list of boarding passes. What is the highest seat ID on a boarding pass?
//!
//! --- Part Two ---
//! Ding! The "fasten seat belt" signs have turned on. Time to find your seat.
//!
//! It's a completely full flight, so your seat should be the only missing boarding pass in your list. However, there's a catch: some of the seats at the very front and back of the plane don't exist on this aircraft, so they'll be missing from your list as well.
//!
//! Your seat wasn't at the very front or back, though; the seats with IDs +1 and -1 from yours will be in your list.
//!
//! What is the ID of your seat?
use std::str::FromStr;
use aoc_runner_derive::{aoc, aoc_generator};
#[derive(Debug, PartialEq)]
struct Seat {
row: u32,
column: u32,
}
impl Seat {
fn id(&self) -> u32 {
self.row * 8 + self.column
}
}
impl FromStr for Seat {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
let mut r_start = 0;
let mut r_size = 128 / 2;
let mut c_start = 0;
let mut c_size = 8 / 2;
s.chars().for_each(|c| match c {
'F' => r_size /= 2,
'B' => {
r_start += r_size;
r_size /= 2;
}
'L' => c_size /= 2,
'R' => {
c_start += c_size;
c_size /= 2;
}
c => panic!(format!("unexpected character '{}'", c)),
});
Ok(Seat {
row: r_start,
column: c_start,
})
}
}
#[aoc_generator(day5, part1, wathiede)]
#[aoc_generator(day5, part2, wathiede)]
fn parse(input: &str) -> Vec<Seat> {
input
.split('\n')
.map(str::parse)
.filter_map(Result::ok)
.collect()
}
#[aoc(day5, part1, wathiede)]
fn solution1(seats: &[Seat]) -> u32 {
seats.iter().map(|s| s.id()).max().unwrap()
}
#[aoc(day5, part1, glenng)]
fn solution1_glenng(input: &str) -> u32 {
input
.split('\n')
.map(|s| {
s.chars().fold(0, |s, c| match c {
'F' | 'L' => s << 1,
'B' | 'R' => s << 1 | 1,
_ => panic!(format!("unexpected character '{}'", c)),
})
})
.map(|s| {
let r = s >> 3;
let c = s & 0b111;
r * 8 + c
})
.max()
.unwrap()
}
#[aoc(day5, part2, wathiede)]
fn solution2(seats: &[Seat]) -> u32 {
let mut seat_ids: Vec<_> = seats.iter().map(|s| s.id()).collect();
seat_ids.sort();
let mut last_id = seat_ids[0];
for id in &seat_ids[1..] {
if id - last_id != 1 {
return id - 1;
}
last_id = *id;
}
panic!();
}
#[cfg(test)]
mod tests {
use super::*;
const INPUT: &'static str = "BFFFBBFRRR\nFFFBBBFRRR\nBBFFBBFRLL";
static WANT: &'static [Seat] = &[
Seat { row: 70, column: 7 },
Seat { row: 14, column: 7 },
Seat {
row: 102,
column: 4,
},
];
#[test]
fn parse_seats() {
assert_eq!(parse(INPUT), WANT);
}
#[test]
fn id() {
assert_eq!(
WANT.iter().map(|s| s.id()).collect::<Vec<u32>>(),
vec![567, 119, 820]
);
}
}

161
2020/src/day6.rs Normal file
View File

@@ -0,0 +1,161 @@
//! --- Day 6: Custom Customs ---
//! As your flight approaches the regional airport where you'll switch to a much larger plane, customs declaration forms are distributed to the passengers.
//!
//! The form asks a series of 26 yes-or-no questions marked a through z. All you need to do is identify the questions for which anyone in your group answers "yes". Since your group is just you, this doesn't take very long.
//!
//! However, the person sitting next to you seems to be experiencing a language barrier and asks if you can help. For each of the people in their group, you write down the questions for which they answer "yes", one per line. For example:
//!
//! abcx
//! abcy
//! abcz
//! In this group, there are 6 questions to which anyone answered "yes": a, b, c, x, y, and z. (Duplicate answers to the same question don't count extra; each question counts at most once.)
//!
//! Another group asks for your help, then another, and eventually you've collected answers from every group on the plane (your puzzle input). Each group's answers are separated by a blank line, and within each group, each person's answers are on a single line. For example:
//!
//! abc
//!
//! a
//! b
//! c
//!
//! ab
//! ac
//!
//! a
//! a
//! a
//! a
//!
//! b
//! This list represents answers from five groups:
//!
//! The first group contains one person who answered "yes" to 3 questions: a, b, and c.
//! The second group contains three people; combined, they answered "yes" to 3 questions: a, b, and c.
//! The third group contains two people; combined, they answered "yes" to 3 questions: a, b, and c.
//! The fourth group contains four people; combined, they answered "yes" to only 1 question, a.
//! The last group contains one person who answered "yes" to only 1 question, b.
//! In this example, the sum of these counts is 3 + 3 + 3 + 1 + 1 = 11.
//!
//! For each group, count the number of questions to which anyone answered "yes". What is the sum of those counts?
//!
//! --- Part Two ---
//! As you finish the last group's customs declaration, you notice that you misread one word in the instructions:
//!
//! You don't need to identify the questions to which anyone answered "yes"; you need to identify the questions to which everyone answered "yes"!
//!
//! Using the same example as above:
//!
//! abc
//!
//! a
//! b
//! c
//!
//! ab
//! ac
//!
//! a
//! a
//! a
//! a
//!
//! b
//! This list represents answers from five groups:
//!
//! In the first group, everyone (all 1 person) answered "yes" to 3 questions: a, b, and c.
//! In the second group, there is no question to which everyone answered "yes".
//! In the third group, everyone answered yes to only 1 question, a. Since some people did not answer "yes" to b or c, they don't count.
//! In the fourth group, everyone answered yes to only 1 question, a.
//! In the fifth group, everyone (all 1 person) answered "yes" to 1 question, b.
//! In this example, the sum of these counts is 3 + 0 + 1 + 1 + 1 = 6.
//!
//! For each group, count the number of questions to which everyone answered "yes". What is the sum of those counts?
use std::collections::HashSet;
use aoc_runner_derive::aoc;
#[aoc(day6, part1)]
fn solution1(input: &str) -> usize {
input
.split("\n\n")
.map(|group| group.chars().filter(|c| c != &'\n').collect::<HashSet<_>>())
.map(|set| set.len())
.sum()
}
#[aoc(day6, part2)]
fn solution2(input: &str) -> usize {
input
.split("\n\n")
.map(|group| {
let sets = group
.split('\n')
.map(|p| p.chars().collect::<HashSet<_>>())
.collect::<Vec<_>>();
// Find letters common to all sets int this group.
sets.iter().fold(sets.first().unwrap().clone(), |acc, s| {
acc.intersection(s).cloned().collect()
})
})
.map(|set| set.len())
.sum()
}
#[aoc(day6, part2, faster)]
fn solution2_faster(input: &str) -> usize {
input
.split("\n\n")
.filter_map(|group| {
group.split('\n').fold(None, |acc: Option<HashSet<_>>, p| {
match acc {
None => {
// Add all the letters for the first set.
Some(p.chars().collect())
}
Some(acc) => {
// Remove from acc any letters not in p.
let tmp = Some(
p.chars()
.filter(|c| acc.contains(c))
.collect::<HashSet<_>>(),
);
tmp
}
}
})
})
.map(|set| set.len())
.sum()
}
#[cfg(test)]
mod tests {
use super::*;
const INPUT: &'static str = r#"abc
a
b
c
ab
ac
a
a
a
a
b"#;
#[test]
fn part1() {
assert_eq!(solution1(INPUT), 11);
}
#[test]
fn part2() {
assert_eq!(solution2(INPUT), 6);
}
}

204
2020/src/day7.rs Normal file
View File

@@ -0,0 +1,204 @@
//! --- Day 7: Handy Haversacks ---
//! You land at the regional airport in time for your next flight. In fact, it looks like you'll even have time to grab some food: all flights are currently delayed due to issues in luggage processing.
//!
//! Due to recent aviation regulations, many rules (your puzzle input) are being enforced about bags and their contents; bags must be color-coded and must contain specific quantities of other color-coded bags. Apparently, nobody responsible for these regulations considered how long they would take to enforce!
//!
//! For example, consider the following rules:
//!
//! light red bags contain 1 bright white bag, 2 muted yellow bags.
//! dark orange bags contain 3 bright white bags, 4 muted yellow bags.
//! bright white bags contain 1 shiny gold bag.
//! muted yellow bags contain 2 shiny gold bags, 9 faded blue bags.
//! shiny gold bags contain 1 dark olive bag, 2 vibrant plum bags.
//! dark olive bags contain 3 faded blue bags, 4 dotted black bags.
//! vibrant plum bags contain 5 faded blue bags, 6 dotted black bags.
//! faded blue bags contain no other bags.
//! dotted black bags contain no other bags.
//! These rules specify the required contents for 9 bag types. In this example, every faded blue bag is empty, every vibrant plum bag contains 11 bags (5 faded blue and 6 dotted black), and so on.
//!
//! You have a shiny gold bag. If you wanted to carry it in at least one other bag, how many different bag colors would be valid for the outermost bag? (In other words: how many colors can, eventually, contain at least one shiny gold bag?)
//!
//! In the above rules, the following options would be available to you:
//!
//! A bright white bag, which can hold your shiny gold bag directly.
//! A muted yellow bag, which can hold your shiny gold bag directly, plus some other bags.
//! A dark orange bag, which can hold bright white and muted yellow bags, either of which could then hold your shiny gold bag.
//! A light red bag, which can hold bright white and muted yellow bags, either of which could then hold your shiny gold bag.
//! So, in this example, the number of bag colors that can eventually contain at least one shiny gold bag is 4.
//!
//! How many bag colors can eventually contain at least one shiny gold bag? (The list of rules is quite long; make sure you get all of it.)
//!
//!
//! --- Part Two ---
//! It's getting pretty expensive to fly these days - not because of ticket prices, but because of the ridiculous number of bags you need to buy!
//!
//! Consider again your shiny gold bag and the rules from the above example:
//!
//! faded blue bags contain 0 other bags.
//! dotted black bags contain 0 other bags.
//! vibrant plum bags contain 11 other bags: 5 faded blue bags and 6 dotted black bags.
//! dark olive bags contain 7 other bags: 3 faded blue bags and 4 dotted black bags.
//! So, a single shiny gold bag must contain 1 dark olive bag (and the 7 bags within it) plus 2 vibrant plum bags (and the 11 bags within each of those): 1 + 1*7 + 2 + 2*11 = 32 bags!
//!
//! Of course, the actual rules have a small chance of going several levels deeper than this example; be sure to count all of the bags, even if the nesting becomes topologically impractical!
//!
//! Here's another example:
//!
//! shiny gold bags contain 2 dark red bags.
//! dark red bags contain 2 dark orange bags.
//! dark orange bags contain 2 dark yellow bags.
//! dark yellow bags contain 2 dark green bags.
//! dark green bags contain 2 dark blue bags.
//! dark blue bags contain 2 dark violet bags.
//! dark violet bags contain no other bags.
//! In this example, a single shiny gold bag must contain 126 other bags.
//!
//! How many individual bags are required inside your single shiny gold bag?
use std::collections::HashMap;
use std::collections::HashSet;
use aoc_runner_derive::{aoc, aoc_generator};
type Color = String;
#[derive(Debug, Default)]
struct Node {
color: Color,
parents: Vec<Color>,
children: Vec<(usize, Color)>,
}
#[derive(Debug, Default)]
struct Graph {
nodes: HashMap<Color, Node>,
}
impl Graph {
fn add_node(&mut self, line: &str) {
let parts: Vec<_> = line.split(" bags contain ").collect();
match parts.len() {
0 | 1 => panic!(format!("line '{}' fails assumptions", line)),
_ => {
let parent_color = parts[0].to_string();
let mut children = Vec::new();
if parts[1] != "no other bags." {
for chunk in parts[1].split(' ').collect::<Vec<_>>().chunks(4) {
// [0] quantity
// [1] color1
// [2] color2
// [3] bag/bags[,.]
let color = format!("{} {}", chunk[1], chunk[2]);
let c = self.nodes.entry(color.clone()).or_insert(Node {
color: color.clone(),
parents: Vec::new(),
children: Vec::new(),
});
c.parents.push(parent_color.clone());
let count = chunk[0].parse::<usize>().expect("couldn't parse bag count");
children.push((count, color.clone()));
}
}
// Get or create this parent color
let mut p = self.nodes.entry(parent_color.clone()).or_insert(Node {
color: parent_color.clone(),
parents: Vec::new(),
children: Vec::new(),
});
p.children = children;
}
}
}
fn top_level(&self, color: &Color) -> HashSet<Color> {
let n = self.nodes.get(color).expect("Couldn't find node");
self.top_level_rec(n.parents.clone())
}
fn top_level_rec(&self, parents: Vec<Color>) -> HashSet<Color> {
if parents.is_empty() {
return HashSet::new();
}
let mut set = HashSet::new();
set.extend(parents.clone());
parents.iter().for_each(|color| {
let n = self.nodes.get(color).expect("Couldn't find node");
set.extend(self.top_level_rec(n.parents.clone()));
});
set
}
fn bag_count(&self, color: &Color) -> usize {
let n = self.nodes.get(color).expect("Couldn't find node");
if n.children.is_empty() {
// No children.
return 0;
} else {
// Number of children bags and multiple the number of child bags by the transitive
// closure of the child's sub bags.
n.children
.iter()
// Return the number of sub
.map(|(cnt, color)| cnt + cnt * self.bag_count(color))
.sum()
}
}
}
#[aoc_generator(day7)]
fn parse(input: &str) -> Graph {
let mut g = Graph::default();
input.split('\n').for_each(|line| g.add_node(line));
g
}
#[aoc(day7, part1)]
fn solution1(g: &Graph) -> usize {
let answer = g.top_level(&"shiny gold".to_string()).len();
/*
// Ensure we don't break part 1 while working on part 2.
let correct_answer = 222;
assert_eq!(answer, correct_answer);
*/
answer
}
#[aoc(day7, part2)]
fn solution2(g: &Graph) -> usize {
g.bag_count(&"shiny gold".to_string())
}
#[cfg(test)]
mod tests {
use super::*;
const INPUT1: &'static str = r#"light red bags contain 1 bright white bag, 2 muted yellow bags.
dark orange bags contain 3 bright white bags, 4 muted yellow bags.
bright white bags contain 1 shiny gold bag.
muted yellow bags contain 2 shiny gold bags, 9 faded blue bags.
shiny gold bags contain 1 dark olive bag, 2 vibrant plum bags.
dark olive bags contain 3 faded blue bags, 4 dotted black bags.
vibrant plum bags contain 5 faded blue bags, 6 dotted black bags.
faded blue bags contain no other bags.
dotted black bags contain no other bags."#;
#[test]
fn part1() {
assert_eq!(solution1(&parse(INPUT1)), 4);
}
const INPUT2: &'static str = r#"shiny gold bags contain 2 dark red bags.
dark red bags contain 2 dark orange bags.
dark orange bags contain 2 dark yellow bags.
dark yellow bags contain 2 dark green bags.
dark green bags contain 2 dark blue bags.
dark blue bags contain 2 dark violet bags.
dark violet bags contain no other bags."#;
#[test]
fn part2() {
assert_eq!(solution2(&parse(INPUT1)), 32);
assert_eq!(solution2(&parse(INPUT2)), 126);
}
}

245
2020/src/day8.rs Normal file
View File

@@ -0,0 +1,245 @@
//! --- Day 8: Handheld Halting ---
//! Your flight to the major airline hub reaches cruising altitude without incident. While you consider checking the in-flight menu for one of those drinks that come with a little umbrella, you are interrupted by the kid sitting next to you.
//!
//! Their handheld game console won't turn on! They ask if you can take a look.
//!
//! You narrow the problem down to a strange infinite loop in the boot code (your puzzle input) of the device. You should be able to fix it, but first you need to be able to run the code in isolation.
//!
//! The boot code is represented as a text file with one instruction per line of text. Each instruction consists of an operation (acc, jmp, or nop) and an argument (a signed number like +4 or -20).
//!
//! acc increases or decreases a single global value called the accumulator by the value given in the argument. For example, acc +7 would increase the accumulator by 7. The accumulator starts at 0. After an acc instruction, the instruction immediately below it is executed next.
//! jmp jumps to a new instruction relative to itself. The next instruction to execute is found using the argument as an offset from the jmp instruction; for example, jmp +2 would skip the next instruction, jmp +1 would continue to the instruction immediately below it, and jmp -20 would cause the instruction 20 lines above to be executed next.
//! nop stands for No OPeration - it does nothing. The instruction immediately below it is executed next.
//! For example, consider the following program:
//!
//! nop +0
//! acc +1
//! jmp +4
//! acc +3
//! jmp -3
//! acc -99
//! acc +1
//! jmp -4
//! acc +6
//! These instructions are visited in this order:
//!
//! nop +0 | 1
//! acc +1 | 2, 8(!)
//! jmp +4 | 3
//! acc +3 | 6
//! jmp -3 | 7
//! acc -99 |
//! acc +1 | 4
//! jmp -4 | 5
//! acc +6 |
//! First, the nop +0 does nothing. Then, the accumulator is increased from 0 to 1 (acc +1) and jmp +4 sets the next instruction to the other acc +1 near the bottom. After it increases the accumulator from 1 to 2, jmp -4 executes, setting the next instruction to the only acc +3. It sets the accumulator to 5, and jmp -3 causes the program to continue back at the first acc +1.
//!
//! This is an infinite loop: with this sequence of jumps, the program will run forever. The moment the program tries to run any instruction a second time, you know it will never terminate.
//!
//! Immediately before the program would run an instruction a second time, the value in the accumulator is 5.
//!
//! Run your copy of the boot code. Immediately before any instruction is executed a second time, what value is in the accumulator?
//!
//! --- Part Two ---
//! After some careful analysis, you believe that exactly one instruction is corrupted.
//!
//! Somewhere in the program, either a jmp is supposed to be a nop, or a nop is supposed to be a jmp. (No acc instructions were harmed in the corruption of this boot code.)
//!
//! The program is supposed to terminate by attempting to execute an instruction immediately after the last instruction in the file. By changing exactly one jmp or nop, you can repair the boot code and make it terminate correctly.
//!
//! For example, consider the same program from above:
//!
//! nop +0
//! acc +1
//! jmp +4
//! acc +3
//! jmp -3
//! acc -99
//! acc +1
//! jmp -4
//! acc +6
//! If you change the first instruction from nop +0 to jmp +0, it would create a single-instruction infinite loop, never leaving that instruction. If you change almost any of the jmp instructions, the program will still eventually find another jmp instruction and loop forever.
//!
//! However, if you change the second-to-last instruction (from jmp -4 to nop -4), the program terminates! The instructions are visited in this order:
//!
//! nop +0 | 1
//! acc +1 | 2
//! jmp +4 | 3
//! acc +3 |
//! jmp -3 |
//! acc -99 |
//! acc +1 | 4
//! nop -4 | 5
//! acc +6 | 6
//! After the last instruction (acc +6), the program terminates by attempting to run the instruction below the last instruction in the file. With this change, after the program terminates, the accumulator contains the value 8 (acc +1, acc +1, acc +6).
//!
//! Fix the program so that it terminates normally by changing exactly one jmp (to nop) or nop (to jmp). What is the value of the accumulator after the program terminates?
use std::str::FromStr;
use aoc_runner_derive::aoc;
#[derive(Copy, Clone, Debug, PartialEq)]
enum Instruction {
Nop(i32),
Acc(i32),
Jmp(i32),
}
impl FromStr for Instruction {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
let mut it = s.split(' ');
Ok(match it.next() {
Some("nop") => Instruction::Nop(it.next().ok_or(())?.parse().map_err(|_| ())?),
Some("acc") => Instruction::Acc(it.next().ok_or(())?.parse().map_err(|_| ())?),
Some("jmp") => Instruction::Jmp(it.next().ok_or(())?.parse().map_err(|_| ())?),
Some(c) => panic!(format!("unknown instruction '{}'", c)),
None => panic!(format!("no space in '{}'", s)),
})
}
}
#[derive(Default, Debug, PartialEq)]
struct Program {
ip: usize,
acc: i32,
intrs: Vec<Instruction>,
executed: Vec<bool>,
}
impl Program {
fn reset(&mut self) {
self.ip = 0;
self.acc = 0;
self.executed.iter_mut().for_each(|i| *i = false);
}
fn debug(&mut self, bad_ip: usize) -> Option<i32> {
loop {
if self.executed[self.ip] {
return None;
}
self.executed[self.ip] = true;
let intr = self.intrs[self.ip];
let intr = if self.ip == bad_ip {
match intr {
// Swap instruction as this is a possible bug location.
Instruction::Nop(op) => Instruction::Jmp(op),
Instruction::Jmp(op) => Instruction::Nop(op),
// Acc can't be buggy per the instructions.
Instruction::Acc(_) => return None,
}
} else {
intr
};
match intr {
Instruction::Nop(_) => self.ip += 1,
Instruction::Acc(op) => {
self.acc += op;
self.ip += 1;
}
Instruction::Jmp(op) => self.ip = (self.ip as i32 + op) as usize,
}
if self.ip >= self.intrs.len() {
return Some(self.acc);
}
}
}
fn run(&mut self) -> i32 {
loop {
if self.executed[self.ip] {
return self.acc;
}
self.executed[self.ip] = true;
match self.intrs[self.ip] {
Instruction::Nop(_) => self.ip += 1,
Instruction::Acc(op) => {
self.acc += op;
self.ip += 1;
}
Instruction::Jmp(op) => self.ip = (self.ip as i32 + op) as usize,
}
}
}
}
impl FromStr for Program {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
let intrs: Vec<_> = s.split('\n').filter_map(|i| i.parse().ok()).collect();
let executed = vec![false; intrs.len()];
Ok(Program {
ip: 0,
acc: 0,
intrs,
executed,
})
}
}
#[aoc(day8, part1)]
fn solution1(input: &str) -> i32 {
let mut p: Program = input.parse().expect("Failed to parse Program");
p.run()
}
#[aoc(day8, part2)]
fn solution2(input: &str) -> i32 {
let mut p: Program = input.parse().expect("Failed to parse Program");
for bad_ip in 0..p.intrs.len() {
if let Some(acc) = p.debug(bad_ip) {
return acc;
}
p.reset();
}
panic!("no bugfix found")
}
#[cfg(test)]
mod tests {
use super::*;
const INPUT1: &'static str = r#"nop +0
acc +1
jmp +4
acc +3
jmp -3
acc -99
acc +1
jmp -4
acc +6"#;
#[test]
fn make() {
assert_eq!(
INPUT1.parse::<Program>().expect("Failed to parse input"),
Program {
ip: 0,
acc: 0,
intrs: vec![
Instruction::Nop(0),
Instruction::Acc(1),
Instruction::Jmp(4),
Instruction::Acc(3),
Instruction::Jmp(-3),
Instruction::Acc(-99),
Instruction::Acc(1),
Instruction::Jmp(-4),
Instruction::Acc(6),
],
executed: vec![false; 9],
}
);
}
#[test]
fn part1() {
assert_eq!(solution1(&INPUT1), 5);
}
#[test]
fn part2() {
assert_eq!(solution2(&INPUT1), 8);
}
}

208
2020/src/day9.rs Normal file
View File

@@ -0,0 +1,208 @@
//! --- Day 9: Encoding Error ---
//! With your neighbor happily enjoying their video game, you turn your attention to an open data port on the little screen in the seat in front of you.
//!
//! Though the port is non-standard, you manage to connect it to your computer through the clever use of several paperclips. Upon connection, the port outputs a series of numbers (your puzzle input).
//!
//! The data appears to be encrypted with the eXchange-Masking Addition System (XMAS) which, conveniently for you, is an old cypher with an important weakness.
//!
//! XMAS starts by transmitting a preamble of 25 numbers. After that, each number you receive should be the sum of any two of the 25 immediately previous numbers. The two numbers will have different values, and there might be more than one such pair.
//!
//! For example, suppose your preamble consists of the numbers 1 through 25 in a random order. To be valid, the next number must be the sum of two of those numbers:
//!
//! 26 would be a valid next number, as it could be 1 plus 25 (or many other pairs, like 2 and 24).
//! 49 would be a valid next number, as it is the sum of 24 and 25.
//! 100 would not be valid; no two of the previous 25 numbers sum to 100.
//! 50 would also not be valid; although 25 appears in the previous 25 numbers, the two numbers in the pair must be different.
//! Suppose the 26th number is 45, and the first number (no longer an option, as it is more than 25 numbers ago) was 20. Now, for the next number to be valid, there needs to be some pair of numbers among 1-19, 21-25, or 45 that add up to it:
//!
//! 26 would still be a valid next number, as 1 and 25 are still within the previous 25 numbers.
//! 65 would not be valid, as no two of the available numbers sum to it.
//! 64 and 66 would both be valid, as they are the result of 19+45 and 21+45 respectively.
//! Here is a larger example which only considers the previous 5 numbers (and has a preamble of length 5):
//!
//! 35
//! 20
//! 15
//! 25
//! 47
//! 40
//! 62
//! 55
//! 65
//! 95
//! 102
//! 117
//! 150
//! 182
//! 127
//! 219
//! 299
//! 277
//! 309
//! 576
//! In this example, after the 5-number preamble, almost every number is the sum of two of the previous 5 numbers; the only number that does not follow this rule is 127.
//!
//! The first step of attacking the weakness in the XMAS data is to find the first number in the list (after the preamble) which is not the sum of two of the 25 numbers before it. What is the first number that does not have this property?
//!
//! --- Part Two ---
//! The final step in breaking the XMAS encryption relies on the invalid number you just found: you must find a contiguous set of at least two numbers in your list which sum to the invalid number from step 1.
//!
//! Again consider the above example:
//!
//! 35
//! 20
//! 15
//! 25
//! 47
//! 40
//! 62
//! 55
//! 65
//! 95
//! 102
//! 117
//! 150
//! 182
//! 127
//! 219
//! 299
//! 277
//! 309
//! 576
//! In this list, adding up all of the numbers from 15 through 40 produces the invalid number from step 1, 127. (Of course, the contiguous set of numbers in your actual list might be much longer.)
//!
//! To find the encryption weakness, add together the smallest and largest number in this contiguous range; in this example, these are 15 and 47, producing 62.
//!
//! What is the encryption weakness in your XMAS-encrypted list of numbers?
use aoc_runner_derive::{aoc, aoc_generator};
#[aoc_generator(day9)]
fn parse(input: &str) -> Vec<usize> {
input
.split('\n')
.map(|s| s.parse::<usize>().unwrap())
.collect::<Vec<_>>()
}
fn solution1_impl(nums: &[usize], win_size: usize) -> usize {
nums.windows(win_size + 1)
.skip_while(|chunk| {
let past = &chunk[..win_size];
let cur = chunk[win_size];
for p in past {
let diff = if cur > *p { cur - p } else { p - cur };
if past.contains(&diff) {
return true;
}
}
false
})
.find_map(|chunk| Some(chunk[win_size]))
.unwrap()
}
fn solution1_impl_sorted(nums: &[usize], win_size: usize) -> usize {
nums.windows(win_size + 1)
.skip_while(|chunk| {
let mut past = (&chunk[..win_size]).clone().to_owned();
past.sort_unstable();
let cur = chunk[win_size];
for p in &past {
let diff = if cur > *p { cur - p } else { p - cur };
if past.binary_search(&diff).is_ok() {
return true;
}
}
false
})
.find_map(|chunk| Some(chunk[win_size]))
.unwrap()
}
#[aoc(day9, part1)]
fn solution1(nums: &[usize]) -> usize {
solution1_impl(nums, 25)
}
#[aoc(day9, part1, sorted)]
fn solution1_sorted(nums: &[usize]) -> usize {
solution1_impl_sorted(nums, 25)
}
fn sum_min_max(low: usize, hi: usize, nums: &[usize]) -> usize {
let (min, max) = nums[low..hi]
.iter()
.fold((usize::MAX, 0), |(min, max), &n| {
(std::cmp::min(min, n), std::cmp::max(max, n))
});
min + max
}
// If contiguous numbers adding up to `sum` are found, the hi index (inclusive) is returned.
fn find_sum_at(low: usize, nums: &[usize], sum: usize) -> Option<usize> {
let mut p_sum = nums[low];
for hi in low + 1..nums.len() {
let n = nums[hi];
p_sum += n;
if p_sum == sum {
return Some(hi + 1);
}
if p_sum > sum {
return None;
}
}
unreachable!();
}
fn solution2_impl(nums: &[usize], win_size: usize) -> usize {
let sum = solution1_impl(nums, win_size);
for low in 0..nums.len() - 1 {
if let Some(hi) = find_sum_at(low, nums, sum) {
return sum_min_max(low, hi, nums);
}
}
unreachable!();
}
#[aoc(day9, part2)]
fn solution2(nums: &[usize]) -> usize {
solution2_impl(nums, 25)
}
#[cfg(test)]
mod tests {
use super::*;
const INPUT: &'static str = r#"35
20
15
25
47
40
62
55
65
95
102
117
150
182
127
219
299
277
309
576"#;
#[test]
fn part1() {
assert_eq!(solution1_impl(&parse(&INPUT), 5), 127);
}
#[test]
fn part2() {
assert_eq!(solution2_impl(&parse(&INPUT), 5), 62);
}
}

View File

@@ -1,6 +1,22 @@
mod day1;
mod day2;
mod day3;
pub mod day1;
pub mod day10;
pub mod day11;
pub mod day12;
pub mod day13;
pub mod day14;
pub mod day15;
pub mod day16;
pub mod day17;
//pub mod day18;
pub mod day19;
pub mod day2;
pub mod day3;
pub mod day4;
pub mod day5;
pub mod day6;
pub mod day7;
pub mod day8;
pub mod day9;
use aoc_runner_derive::aoc_lib;

5
2020/src/main.rs Normal file
View File

@@ -0,0 +1,5 @@
use advent2020;
use aoc_runner_derive::aoc_main;
aoc_main! { lib = advent2020 }