Day 13 part 2 almost working?

This commit is contained in:
Bill Thiede 2020-12-14 17:30:49 -08:00
parent 29778566a4
commit 78063d8bf6

View File

@ -111,8 +111,8 @@ struct Schedule {
buses: Vec<u32>,
}
#[aoc_generator(day13)]
fn parse(input: &str) -> Schedule {
#[aoc_generator(day13, part1)]
fn parse1(input: &str) -> Schedule {
let mut it = input.split('\n');
let time = it
.next()
@ -142,18 +142,81 @@ fn solution1(sch: &Schedule) -> u32 {
bus * (next - sch.time)
}
#[aoc(day13, part2)]
fn solution2(sch: &Schedule) -> u32 {
dbg!(&sch);
let (bus, next) = sch
.buses
#[derive(Copy, Clone, Debug)]
struct Departure {
bus: usize,
delay: usize,
}
#[aoc_generator(day13, part2)]
fn parse2(input: &str) -> Vec<Departure> {
let mut it = input.split('\n');
let _ = it.next().expect("Premature EOF");
it.next()
.expect("Premature EOF")
.split(',')
.enumerate()
.filter_map(|(i, s)| Some((i, s.parse::<usize>().ok()?)))
.map(|(delay, bus)| Departure { bus, delay })
.collect()
}
fn solution2_correct_but_too_slow(sch: &[Departure]) -> usize {
// Shitty brute force to explore the problem space.
let f = sch[0];
for x in 2.. {
let t = f.bus * x;
if sch[1..].iter().all(|d| (d.bus - (t % d.bus)) == d.delay) {
return t;
}
}
unreachable!()
}
fn inv_mod(a: usize, m: usize) -> usize {
{
let a = a % m;
for i in 1..m {
if (a * i) % m == 1 {
return i;
}
}
}
panic!(format!("no inverse modulo found for {}^-1 % {}", a, m));
}
/// Based on http://homepages.math.uic.edu/~leon/mcs425-s08/handouts/chinese_remainder.pdf
fn chinese_remainder(a_m: Vec<(usize, usize)>) -> usize {
let a: Vec<_> = a_m.iter().map(|(a, _m)| a).collect();
let m: Vec<_> = a_m.iter().map(|(_a, m)| m).collect();
let m_all = m.iter().fold(1, |acc, m| *m * acc);
let z: Vec<_> = m.iter().map(|m| m_all / *m).collect();
let y: Vec<_> = m
.iter()
// Find the next bus time after sch.time.
.map(|b| (b, b * ((sch.time / b) + 1)))
// Find the earliest next bus time.
.min_by(|i1, i2| i1.1.cmp(&i2.1))
.unwrap();
bus * (next - sch.time)
.zip(z.iter())
.map(|(m, z)| inv_mod(*z, **m))
.collect();
let w: Vec<_> = y
.iter()
.zip(z.iter())
.map(|(y, z)| (*y * *z) % m_all)
.collect();
dbg!(&a, &m, &m_all, &z, &y, &w);
let x = a
.iter()
.zip(w.iter())
.fold(0, |acc, (a, w)| acc + (*a * *w));
dbg!(&x);
dbg!(x % m_all)
}
#[aoc(day13, part2)]
fn solution2(sch: &[Departure]) -> usize {
let a_m: Vec<(_, _)> = sch.iter().map(|d| (d.delay, d.bus)).collect();
chinese_remainder(a_m)
}
#[cfg(test)]
@ -164,9 +227,9 @@ mod tests {
7,13,x,x,59,x,31,19"#;
#[test]
fn parsing() {
fn parsing1() {
assert_eq!(
parse(INPUT),
parse1(INPUT),
Schedule {
time: 939,
buses: vec![7, 13, 59, 31, 19],
@ -176,10 +239,52 @@ mod tests {
#[test]
fn part1() {
assert_eq!(solution1(&parse(INPUT)), 295);
assert_eq!(solution1(&parse1(INPUT)), 295);
}
#[test]
fn part2() {
assert_eq!(solution2(&parse(INPUT)), 1068781);
for (input, want) in vec![
("7,13,x,x,59,x,31,19", 1068781),
("17,x,13,19", 3417),
("67,7,59,61", 754018),
("67,x,7,59,61", 779210),
("67,7,x,59,61", 1261476),
("1789,37,47,1889", 1202161486),
] {
// Insert fake header '123\n' to make the parse2 function happy.
assert_eq!(solution2(&parse2(&format!("123\n{}", input))), want);
}
}
#[test]
fn inverse_modulo() {
assert_eq!(inv_mod(8400, 11), 8);
assert_eq!(inv_mod(7, 11), 8);
assert_eq!(inv_mod(5775, 16), 15);
assert_eq!(inv_mod(15, 16), 15);
assert_eq!(inv_mod(4400, 21), 2);
assert_eq!(inv_mod(11, 21), 2);
assert_eq!(inv_mod(3696, 25), 6);
assert_eq!(inv_mod(21, 25), 6);
assert_eq!(inv_mod(243257, 11), 4);
assert_eq!(inv_mod(3, 11), 4);
assert_eq!(inv_mod(243257, 13), 1);
}
#[test]
fn chinese_remainder_theorem() {
assert_eq!(chinese_remainder(vec![(2, 5), (3, 7)]), 17);
assert_eq!(chinese_remainder(vec![(1, 3), (4, 5), (6, 7)]), 34);
assert_eq!(chinese_remainder(vec![(3, 5), (2, 6), (4, 7)]), 158);
assert_eq!(
chinese_remainder(vec![(1, 5), (2, 7), (3, 9), (4, 11)]),
1731
);
// http://homepages.math.uic.edu/~leon/mcs425-s08/handouts/chinese_remainder.pdf
// says this answer is 51669 which doesn't check out.
assert_eq!(
chinese_remainder(vec![(6, 11), (13, 16), (9, 21), (19, 25),]),
89469
);
}
}