raytracers/rtchallenge/src/intersections.rs
Bill Thiede c0e422a7eb
All checks were successful
continuous-integration/drone/push Build is passing
shapes: create generic Shape object with Sphere implementation.
2021-07-20 22:17:50 -07:00

221 lines
6.6 KiB
Rust

use std::ops::Index;
use crate::{
rays::Ray,
shapes::Shape,
tuples::{dot, Tuple},
Float, EPSILON,
};
#[derive(Debug, Clone, PartialEq)]
pub struct Intersection<'i> {
pub t: Float,
pub object: &'i Shape,
}
impl<'i> Intersection<'i> {
/// Create new `Intersection` at the given `t` that hits the given `object`.
///
/// # Examples
/// ```
/// use rtchallenge::{intersections::Intersection, shapes::Shape};
///
/// // An intersection ecapsulates t and object.
/// let s = Shape::sphere();
/// let i = Intersection::new(3.5, &s);
/// assert_eq!(i.t, 3.5);
/// assert_eq!(i.object, &s);
/// ```
pub fn new(t: Float, object: &Shape) -> Intersection {
Intersection { t, object }
}
}
/// Aggregates `Intersection`s.
///
/// # Examples
/// ```
/// use rtchallenge::{
/// intersections::{Intersection, Intersections},
/// rays::Ray,
/// shapes::{intersect, Shape},
/// tuples::Tuple,
/// };
///
/// let s = Shape::sphere();
/// let i1 = Intersection::new(1., &s);
/// let i2 = Intersection::new(2., &s);
/// let xs = Intersections::new(vec![i1, i2]);
/// assert_eq!(xs.len(), 2);
/// assert_eq!(xs[0].t, 1.);
/// assert_eq!(xs[1].t, 2.);
///
/// let r = Ray::new(Tuple::point(0., 0., -5.), Tuple::vector(0., 0., 1.));
/// let xs = intersect(&s, &r);
/// assert_eq!(xs.len(), 2);
/// assert_eq!(xs[0].object, &s);
/// assert_eq!(xs[1].object, &s);
/// ```
#[derive(Debug, Default, PartialEq)]
pub struct Intersections<'i>(Vec<Intersection<'i>>);
impl<'i> Intersections<'i> {
pub fn new(xs: Vec<Intersection<'i>>) -> Intersections {
Intersections(xs)
}
pub fn len(&self) -> usize {
self.0.len()
}
/// Finds nearest hit for this collection of intersections.
///
/// # Examples
/// ```
/// use rtchallenge::{
/// intersections::{Intersection, Intersections},
/// rays::Ray,
/// shapes::{intersect, Shape},
/// tuples::Tuple,
/// };
///
/// // The hit, when all intersections have positive t.
/// let s = Shape::sphere();
/// let i1 = Intersection::new(1., &s);
/// let i2 = Intersection::new(2., &s);
/// let xs = Intersections::new(vec![i2, i1.clone()]);
/// let i = xs.hit();
/// assert_eq!(i, Some(&i1));
///
/// // The hit, when some intersections have negative t.
/// let s = Shape::sphere();
/// let i1 = Intersection::new(-1., &s);
/// let i2 = Intersection::new(1., &s);
/// let xs = Intersections::new(vec![i2.clone(), i1]);
/// let i = xs.hit();
/// assert_eq!(i, Some(&i2));
///
/// // The hit, when all intersections have negative t.
/// let s = Shape::sphere();
/// let i1 = Intersection::new(-2., &s);
/// let i2 = Intersection::new(-1., &s);
/// let xs = Intersections::new(vec![i2, i1]);
/// let i = xs.hit();
/// assert_eq!(i, None);
///
/// // The hit is always the lowest nonnegative intersection.
/// let s = Shape::sphere();
/// let i1 = Intersection::new(5., &s);
/// let i2 = Intersection::new(7., &s);
/// let i3 = Intersection::new(-3., &s);
/// let i4 = Intersection::new(2., &s);
/// let xs = Intersections::new(vec![i1, i2, i3, i4.clone()]);
/// let i = xs.hit();
/// assert_eq!(i, Some(&i4));
/// ```
pub fn hit(&self) -> Option<&Intersection> {
self.0.iter().filter(|i| i.t > 0.).min_by(|i1, i2| {
i1.t.partial_cmp(&i2.t)
.expect("an intersection has a t value that is NaN")
})
}
}
impl<'i> IntoIterator for Intersections<'i> {
type Item = Intersection<'i>;
type IntoIter = std::vec::IntoIter<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl<'i> Index<usize> for Intersections<'i> {
type Output = Intersection<'i>;
fn index(&self, idx: usize) -> &Self::Output {
&self.0[idx]
}
}
#[derive(Debug)]
pub struct PrecomputedData<'i> {
pub t: Float,
pub object: &'i Shape,
pub point: Tuple,
pub over_point: Tuple,
pub eyev: Tuple,
pub normalv: Tuple,
pub inside: bool,
}
/// Precomputes data common to all intersections.
///
/// # Examples
/// ```
/// use rtchallenge::{
/// intersections::{prepare_computations, Intersection, Intersections},
/// rays::Ray,
/// matrices::Matrix4x4,
/// shapes::{intersect, Shape},
/// tuples::Tuple,
/// EPSILON
/// };
///
/// // Precomputing the state of an intersection.
/// let r = Ray::new(Tuple::point(0., 0., -5.), Tuple::vector(0., 0., 1.));
/// let shape = Shape::sphere();
/// let i = Intersection::new(4., &shape);
/// let comps = prepare_computations(&i, &r);
/// assert_eq!(comps.t, i.t);
/// assert_eq!(comps.object, i.object);
/// assert_eq!(comps.point, Tuple::point(0., 0., -1.));
/// assert_eq!(comps.eyev, Tuple::vector(0., 0., -1.));
/// assert_eq!(comps.normalv, Tuple::vector(0., 0., -1.));
///
/// // The hit, when an intersection occurs on the outside.
/// let r = Ray::new(Tuple::point(0., 0., -5.), Tuple::vector(0., 0., 1.));
/// let shape = Shape::sphere();
/// let i = Intersection::new(4., &shape);
/// let comps = prepare_computations(&i, &r);
/// assert_eq!(comps.inside, false);
///
/// // The hit, when an intersection occurs on the inside.
/// let r = Ray::new(Tuple::point(0., 0., 0.), Tuple::vector(0., 0., 1.));
/// let shape = Shape::sphere();
/// let i = Intersection::new(1., &shape);
/// let comps = prepare_computations(&i, &r);
/// assert_eq!(comps.point, Tuple::point(0., 0., 1.));
/// assert_eq!(comps.eyev, Tuple::vector(0., 0., -1.));
/// assert_eq!(comps.inside, true);
//// // Normal would have been (0, 0, 1), but is inverted when inside.
/// assert_eq!(comps.normalv, Tuple::vector(0., 0., -1.));
///
/// // The hit should offset the point.
/// let r = Ray::new(Tuple::point(0., 0., -5.), Tuple::vector(0., 0., 1.));
/// let mut shape = Shape::sphere();
/// shape .set_transform(Matrix4x4::translation(0.,0.,1.));
/// let i = Intersection::new(5., &shape);
/// let comps = prepare_computations(&i, &r);
/// assert!(comps.over_point.z< -EPSILON/2.);
/// assert!(comps.point.z>comps.over_point.z);
/// ```
pub fn prepare_computations<'i>(i: &'i Intersection, r: &Ray) -> PrecomputedData<'i> {
let point = r.position(i.t);
let normalv = i.object.normal_at(point);
let eyev = -r.direction;
let (inside, normalv) = if dot(normalv, eyev) < 0. {
(true, -normalv)
} else {
(false, normalv)
};
let over_point = point + normalv * EPSILON;
PrecomputedData {
t: i.t,
object: i.object,
point,
over_point,
normalv,
inside,
eyev,
}
}