raytracers/rtchallenge/src/intersections.rs

441 lines
14 KiB
Rust

use std::ops::Index;
use crate::{
rays::Ray,
shapes::Shape,
tuples::{dot, reflect, Tuple},
Float, EPSILON,
};
#[derive(Debug, Clone)]
pub struct Intersection<'i> {
pub t: Float,
pub object: &'i Shape,
}
impl<'i> PartialEq for Intersection<'i> {
fn eq(&self, rhs: &Intersection) -> bool {
((self.t - rhs.t).abs() < EPSILON) && (self.object == rhs.object)
}
}
impl<'i> Intersection<'i> {
/// Create new `Intersection` at the given `t` that hits the given `object`.
///
/// # Examples
/// ```
/// use rtchallenge::{intersections::Intersection, shapes::Shape};
///
/// // An intersection ecapsulates t and object.
/// let s = Shape::sphere();
/// let i = Intersection::new(3.5, &s);
/// assert_eq!(i.t, 3.5);
/// assert_eq!(i.object, &s);
/// ```
pub fn new(t: Float, object: &Shape) -> Intersection {
Intersection { t, object }
}
}
/// Aggregates `Intersection`s.
///
/// # Examples
/// ```
/// use rtchallenge::{
/// intersections::{Intersection, Intersections},
/// rays::Ray,
/// shapes::{intersect, Shape},
/// tuples::Tuple,
/// };
///
/// let s = Shape::sphere();
/// let i1 = Intersection::new(1., &s);
/// let i2 = Intersection::new(2., &s);
/// let xs = Intersections::new(vec![i1, i2]);
/// assert_eq!(xs.len(), 2);
/// assert_eq!(xs[0].t, 1.);
/// assert_eq!(xs[1].t, 2.);
///
/// let r = Ray::new(Tuple::point(0., 0., -5.), Tuple::vector(0., 0., 1.));
/// let xs = intersect(&s, &r);
/// assert_eq!(xs.len(), 2);
/// assert_eq!(xs[0].object, &s);
/// assert_eq!(xs[1].object, &s);
/// ```
#[derive(Debug, Default, PartialEq)]
pub struct Intersections<'i>(Vec<Intersection<'i>>);
/// Create an [Intersections] from a single [Intersection] to aid in tests.
impl<'i> From<Intersection<'i>> for Intersections<'i> {
fn from(i: Intersection<'i>) -> Intersections<'i> {
Intersections::new(vec![i])
}
}
impl<'i> Intersections<'i> {
pub fn new(xs: Vec<Intersection<'i>>) -> Intersections {
Intersections(xs)
}
pub fn len(&self) -> usize {
self.0.len()
}
/// Finds nearest hit for this collection of intersections.
pub fn hit(&self) -> Option<&Intersection> {
self.0.iter().filter(|i| i.t > 0.).min_by(|i1, i2| {
i1.t.partial_cmp(&i2.t)
.expect("an intersection has a t value that is NaN")
})
}
}
impl<'i> IntoIterator for Intersections<'i> {
type Item = Intersection<'i>;
type IntoIter = std::vec::IntoIter<Self::Item>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
impl<'i> Index<usize> for Intersections<'i> {
type Output = Intersection<'i>;
fn index(&self, idx: usize) -> &Self::Output {
&self.0[idx]
}
}
#[derive(Debug)]
pub struct PrecomputedData<'i> {
pub t: Float,
pub object: &'i Shape,
pub point: Tuple,
pub under_point: Tuple,
pub over_point: Tuple,
pub eyev: Tuple,
pub normalv: Tuple,
pub reflectv: Tuple,
pub inside: bool,
pub n1: Float,
pub n2: Float,
}
/// Precomputes data common to all intersections.
pub fn prepare_computations<'i>(
hit: &'i Intersection,
r: &Ray,
xs: &Intersections,
) -> PrecomputedData<'i> {
let point = r.position(hit.t);
let normalv = hit.object.normal_at(point);
let eyev = -r.direction;
let (inside, normalv) = if dot(normalv, eyev) < 0. {
(true, -normalv)
} else {
(false, normalv)
};
let reflectv = reflect(r.direction, normalv);
let mut n1 = -1.;
let mut n2 = -1.;
let mut containers: Vec<&Shape> = Vec::new();
for i in xs.0.iter() {
if hit == i {
if containers.is_empty() {
n1 = 1.;
} else {
n1 = containers.last().unwrap().material.refractive_index;
}
}
match containers.iter().position(|o| o == &i.object) {
Some(idx) => {
containers.remove(idx);
}
None => containers.push(i.object),
}
if hit == i {
if containers.is_empty() {
n2 = 1.;
} else {
n2 = containers.last().unwrap().material.refractive_index;
}
break;
}
}
let over_point = point + normalv * EPSILON;
let under_point = point - normalv * EPSILON;
PrecomputedData {
t: hit.t,
object: hit.object,
point,
over_point,
under_point,
normalv,
reflectv,
inside,
eyev,
n1,
n2,
}
}
/// Compute Schlick approximation to Fresnel's equations.
pub fn schlick(comps: &PrecomputedData) -> Float {
// Find the cosine of the angle between the eye and normal vectors.
let mut cos = dot(comps.eyev, comps.normalv);
// Total internal reflection can only occur if n1 > n2.
if comps.n1 > comps.n2 {
let n = comps.n1 / comps.n2;
let sin2_t = n * n * (1. - cos * cos);
if sin2_t > 1. {
return 1.;
}
// Compute cosine of theta_t using trig identity.
let cos_t = (1. - sin2_t).sqrt();
// When n1 > n2 use cos(theta_t) instead.
cos = cos_t;
}
let r0 = (comps.n1 - comps.n2) / (comps.n1 + comps.n2);
let r0 = r0 * r0;
r0 + (1. - r0) * (1. - cos) * (1. - cos) * (1. - cos) * (1. - cos) * (1. - cos)
}
#[cfg(test)]
mod tests {
use crate::{
intersections::{prepare_computations, schlick, Intersection, Intersections},
materials::MaterialBuilder,
matrices::{scaling, translation},
rays::Ray,
shapes::{glass_sphere, Shape},
tuples::{point, vector},
Float, EPSILON,
};
mod hit {
use super::*;
#[test]
fn when_all_intersections_have_positive_t() {
let s = Shape::sphere();
let i1 = Intersection::new(1., &s);
let i2 = Intersection::new(2., &s);
let xs = Intersections::new(vec![i2, i1.clone()]);
let i = xs.hit();
assert_eq!(i, Some(&i1));
}
#[test]
fn when_some_intersections_have_negative_t() {
let s = Shape::sphere();
let i1 = Intersection::new(-1., &s);
let i2 = Intersection::new(1., &s);
let xs = Intersections::new(vec![i2.clone(), i1]);
let i = xs.hit();
assert_eq!(i, Some(&i2));
}
#[test]
fn when_all_intersections_have_negative_t() {
let s = Shape::sphere();
let i1 = Intersection::new(-2., &s);
let i2 = Intersection::new(-1., &s);
let xs = Intersections::new(vec![i2, i1]);
let i = xs.hit();
assert_eq!(i, None);
}
#[test]
fn always_the_lowest_nonnegative_intersection() {
let s = Shape::sphere();
let i1 = Intersection::new(5., &s);
let i2 = Intersection::new(7., &s);
let i3 = Intersection::new(-3., &s);
let i4 = Intersection::new(2., &s);
let xs = Intersections::new(vec![i1, i2, i3, i4.clone()]);
let i = xs.hit();
assert_eq!(i, Some(&i4));
}
}
mod prepare_computations {
use super::*;
#[test]
fn precomputing_the_state_of_intersection() -> Result<(), Box<dyn std::error::Error>> {
let r = Ray::new(point(0., 0., -5.), vector(0., 0., 1.));
let shape = Shape::sphere();
let xs = Intersections::from(Intersection::new(4., &shape));
let comps = prepare_computations(&xs[0], &r, &xs);
assert_eq!(comps.t, xs[0].t);
assert_eq!(comps.object, xs[0].object);
assert_eq!(comps.point, point(0., 0., -1.));
assert_eq!(comps.eyev, vector(0., 0., -1.));
assert_eq!(comps.normalv, vector(0., 0., -1.));
Ok(())
}
#[test]
fn hit_when_intersection_occurs_outside() -> Result<(), Box<dyn std::error::Error>> {
// The hit, when an intersection occurs on the outside.
let r = Ray::new(point(0., 0., -5.), vector(0., 0., 1.));
let shape = Shape::sphere();
let xs = Intersections::from(Intersection::new(4., &shape));
let comps = prepare_computations(&xs[0], &r, &xs);
assert_eq!(comps.inside, false);
Ok(())
}
#[test]
fn hit_when_intersection_occurs_inside() -> Result<(), Box<dyn std::error::Error>> {
// The hit, when an intersection occurs on the inside.
let r = Ray::new(point(0., 0., 0.), vector(0., 0., 1.));
let shape = Shape::sphere();
let xs = Intersections::from(Intersection::new(1., &shape));
let comps = prepare_computations(&xs[0], &r, &xs);
assert_eq!(comps.point, point(0., 0., 1.));
assert_eq!(comps.eyev, vector(0., 0., -1.));
assert_eq!(comps.inside, true);
// Normal would have been (0, 0, 1), but is inverted when inside.
assert_eq!(comps.normalv, vector(0., 0., -1.));
Ok(())
}
#[test]
fn hit_should_offset_the_point() -> Result<(), Box<dyn std::error::Error>> {
// The hit should offset the point.
let r = Ray::new(point(0., 0., -5.), vector(0., 0., 1.));
let mut shape = Shape::sphere();
shape.set_transform(translation(0., 0., 1.));
let xs = Intersections::from(Intersection::new(5., &shape));
let comps = prepare_computations(&xs[0], &r, &xs);
assert!(comps.over_point.z < -EPSILON / 2.);
assert!(comps.point.z > comps.over_point.z);
Ok(())
}
#[test]
fn precomputing_the_reflection_vector() -> Result<(), Box<dyn std::error::Error>> {
// Precomputing the reflection vector.
let shape = Shape::plane();
let r = Ray::new(
point(0., 1., -1.),
vector(0., -(2 as Float).sqrt() / 2., (2 as Float).sqrt() / 2.),
);
let xs = Intersections::from(Intersection::new((2 as Float).sqrt(), &shape));
let comps = prepare_computations(&xs[0], &r, &xs);
assert_eq!(
comps.reflectv,
vector(0., (2 as Float).sqrt() / 2., (2 as Float).sqrt() / 2.)
);
Ok(())
}
#[test]
fn finding_n1_and_n2() -> Result<(), Box<dyn std::error::Error>> {
// Finding n1 and n2 at various intersections.
let a = glass_sphere()
.transform(scaling(2., 2., 2.))
.material(
MaterialBuilder::default()
.transparency(1.)
.refractive_index(1.5)
.build()?,
)
.build()?;
let b = glass_sphere()
.transform(translation(0., 0., -0.25))
.material(
MaterialBuilder::default()
.transparency(1.)
.refractive_index(2.)
.build()?,
)
.build()?;
let c = glass_sphere()
.transform(translation(0., 0., 0.25))
.material(
MaterialBuilder::default()
.transparency(1.)
.refractive_index(2.5)
.build()?,
)
.build()?;
let r = Ray::new(point(0., 0., -4.), vector(0., 0., 1.));
let xs = Intersections::new(vec![
Intersection::new(2., &a),
Intersection::new(2.75, &b),
Intersection::new(3.25, &c),
Intersection::new(4.75, &b),
Intersection::new(5.25, &c),
Intersection::new(6., &a),
]);
for (index, n1, n2) in &[
(0, 1.0, 1.5),
(1, 1.5, 2.0),
(2, 2.0, 2.5),
(3, 2.5, 2.5),
(4, 2.5, 1.5),
(5, 1.5, 1.0),
] {
let comps = prepare_computations(&xs[*index], &r, &xs);
assert_eq!(comps.n1, *n1);
assert_eq!(comps.n2, *n2);
}
Ok(())
}
#[test]
fn under_point_offset_below_surface() -> Result<(), Box<dyn std::error::Error>> {
// The under point is offset below the surface.
let r = Ray::new(point(0., 0., -5.), vector(0., 0., 1.));
let shape = glass_sphere().transform(translation(0., 0., 1.)).build()?;
let xs = Intersections::from(Intersection::new(5., &shape));
let comps = prepare_computations(&xs[0], &r, &xs);
assert!(comps.under_point.z > EPSILON / 2.);
assert!(comps.point.z < comps.under_point.z);
Ok(())
}
}
mod schlick {
use super::*;
#[test]
fn under_total_reflection() -> Result<(), Box<dyn std::error::Error>> {
let shape = glass_sphere().build()?;
let r = Ray::new(point(0., 0., (2 as Float).sqrt() / 2.), vector(0., 1., 0.));
let xs = Intersections::new(vec![
Intersection::new(-(2 as Float).sqrt() / 2., &shape),
Intersection::new((2 as Float).sqrt() / 2., &shape),
]);
let comps = prepare_computations(&xs[1], &r, &xs);
let reflectance = schlick(&comps);
assert_eq!(reflectance, 1.);
Ok(())
}
#[test]
fn perpendicular_viewing_angle() -> Result<(), Box<dyn std::error::Error>> {
let shape = glass_sphere().build()?;
let r = Ray::new(point(0., 0., 0.), vector(0., 1., 0.));
let xs = Intersections::new(vec![
Intersection::new(-1., &shape),
Intersection::new(1., &shape),
]);
let comps = prepare_computations(&xs[1], &r, &xs);
let reflectance = schlick(&comps);
assert!((reflectance - 0.04).abs() < EPSILON);
Ok(())
}
#[test]
fn small_angle_n2_greater_n1() -> Result<(), Box<dyn std::error::Error>> {
let shape = glass_sphere().build()?;
let r = Ray::new(point(0., 0.99, -2.), vector(0., 0., 1.));
let xs = Intersections::new(vec![Intersection::new(1.8589, &shape)]);
let comps = prepare_computations(&xs[0], &r, &xs);
let reflectance = schlick(&comps);
assert!((reflectance - 0.48873).abs() < EPSILON);
Ok(())
}
}
}