Day 15 part 1

This commit is contained in:
Bill Thiede 2021-12-15 10:37:15 -08:00
parent 2fdcf171b0
commit c16e3ad864
3 changed files with 349 additions and 0 deletions

100
2021/input/2021/day15.txt Normal file
View File

@ -0,0 +1,100 @@
1377191657764644549114627284634913412287739519982496231416283824918194961929936311588211113324916282
1212297521448698359953919612341968949351139967911631956522229222119792152999899993551168415419536961
6159423311678979112521371444921299897197276181489988271511963872918146853113979656119891919929116284
4791323871358399412199298219622788641186798927938163199341117218462279651818983841791285198158689197
7974189811899763275179618283116319192597185732127393472591197762491696726534696112661928998124191441
1719457851119351145679896476439455919892412234291392849988759922872162286199995759192522267673971911
5158991981989914259268282912286934836159941437649989252868156886971224151841291227119542781714229192
8971141349643841951211794248819968548427435466191723999244827371882121325261988461388697379557117813
6984596925919191179943678951217187999979717952993237915971469193192562968292161332928141319899991618
9198522521864259381829335129227674372277199124547185988889492259941882883937916158399823156688865128
8124682618753649934148821878377819747891787181829195781346118199594997697952812114668182584998375593
9981691284313278913662888992426344931897231669692112847984979448943849148537789387936982196747899979
4612594287729384862398119828742189442883965266198489994718698924935284181865741287193312419976111121
9698161969149478565386491726144137461938929999938688185784251478539975684351897911814796415999137427
4215198687955128645232416239572133179888263876627217299182179119281398198291519743556311698595119447
4769546216536687838722946279539949718927689379457711267152121289312649499122925941999769894516538948
2995881981397899317151897695171147699149921139717478649199572991745138182938859417981979318636371733
5896265687179618976487519127375146169177832848256796867888967833698488841993835411394159986678877843
3216645889149389762597933279559298615997238172696673733899239658535753129812911379977549791117989658
3884816682163948316281466989293387989351399981758245478789465919897897823972111872243196689493592859
2147411131991983852642238326868847926889726486359749798736947597961361232791761388538288138311778889
9667691879291819996979958298917569848789574811461556979737155191582528998586729496138919417641516671
2985749275368176832969872226792613823962499974291511594718356964791163978998319397955899236233367196
9146792975371119515819629946162595322898172566118389981777412389859448518999793848789641614927396527
3837698153921119789191289266863437969919159469416859886989979288999338293364182598593531435838918299
3116635237718874995349321215895321218981134288293817795799641825791914139998851951282874988993695793
7561593471951437617129518549197936965341984929165166946255778981198999251529198369291988622121996798
5671179846637276839326113991917774391317631914135868839991981526789969485778186774513984993819918858
6829332192876499239259333179131416651652797879989678673653791799313167962195825894623277922675147419
2114199213615191896184775491411521611589987859919419942228661718872131759515219245894537581322719999
9111987791914149296428193389129811532587733939222947217392149842114232514793791618151173592229671281
6995979618889983189931395618837152991881964616562117919875424671693616994916979814989851972258726362
8173982492272918487736387139295771914721973489627891148815174139856171119417695981112277482189839214
1973523966752994411692968746997296995879577697121374597143849499591366213426378939791149178595161638
5585893988624565875416425158849421541992777828132459639548799994998964889296735678462311472353412967
7998888978481899581293841169535632193113981375899864159935724481141949931596889935158262842998335918
3628289787876715955926724188591588897816776996999489661971733199394273281174961857913237989933989451
8999891193589892228558191976973146639339899432418722147824142953482626221311856529949321934951835227
3992588951996859132652698919297445999986186384145475156862729991985721181638964313723299881446598791
8998893814179771279297296539879723788234226489159913739727989917182438292712863462491283593165387584
2225959678947915336339588711833943992739379439179861836978399199426662599832739483128822695786825928
4919938138891315978138689416887291774881364839148591162128739219164535299459734549155337432999197911
5811216519919174895539797554977936679185698239492921912567121774999488711422544391969771432876537978
5239614948192317841478695119921598999373194178187891395921768432788912522293359417821221957119946281
1988479858958131921192883481392499559613188252381615491311198981658653691389656839995274969418186999
7681966495996941919639623988649188782853795834411334478225123731129587739936417679491619562326995611
5163121511288963298982952314191859371657513679589589729491476296199145629795989556991718931869954195
5286192694799561972391914255528729388961162579826999991948753996967849341943671642439977232844987241
4428178895995144247759399167269333681679595491292381917995999298326832893137644125138231529974592499
4818747595975454796832557299789738541316991638259842799695195686599979445783273918859921299915986952
9417754891252219525194996254344713299966647874186411227972277894179442589131199217999933824814123221
4994994141179221782999435468132963989941331328924377879416667894964349919881719919273389195858632919
6976968727729789979799866987389137352126998771769996593346529935239178231461934599332849891191669783
3638279769222728924783398321639372424899579939421986797719284324742197761998188819691989998694456134
7942399772312398643212169162588662393626113494573293938992496629858316948459199523796897485999921378
1618926196928832916821317498771468433845191219257749761298211872798193673922139789349388129994864112
2744672662951116969991384387997932899791711411128942949881741539172615486131619958932849888897989682
8193685169797222169278874619231971178551717869816119199998223293869323667584378393769322171757659961
3567192399993235879219629458779937992841292566997843196897379191646481548121489984711917991295935959
9145791161291867819713918855165912963216971699817988984653272136935995972742126586832589192163991927
8712419729372896439849678162371923271999124418917611596199166288782836898567935828461556972645691618
1974943823672482569954185719922998567599896762236938717767279661182995366114432538799683897379592854
9379716279297768319753269447991272919214661239572849997471968329889977329941157596172896596534356541
6646625991776574551798145872614721797912217571335478976189691399885799159954742823589679431499683381
8989686475467621429635363139819837633819917676359955759915798412948369139162496822357488719729929699
9952575399865114983355711819388989998898752988216171812892716892892635288989999528963419618898418969
5628277482612799192913177936216253978413218756816239842196325888285889223998597986171699813494975765
8787997189686121858117929165777499728392581119799148997676831848921925893394992791762794499675789289
7568442691119995411445659817292988957454727197967556114172439626332319694755129914814595388989917393
1167946915152153284992129919799398949246947728761958125919513931223797949156627271789872543952184319
4333282313991449435292492972979115959364971739574697214551891471125231369421937456949722396783112819
7993297562943921256985797994839951414791377275818117983949117165983469235412826115996393789982931376
1298945898187917593419458849192816235299119793321858952722674788872499636859117952152983654581115748
4878958876835131628931718969837331917173664888187661244567581167587853362752963213489995238858567899
9168679699798852526937699621149596872192558861969279971951421899916958917919199222795984799115181512
8495992724128927671571265912135878347948681836489591199188311363919513913891778977157177888916936997
8999191812299999181826412647458779129464557453899711499291711727199181999313788754481739897894282299
2297358211198319622489958131157137589129796865587176999673399971359991483798893432429642581288291194
9191151249993972592269748389939197998879479776716874389424892989896918395262244556692919498634767192
3146999389982294398923279851895822879874999174675832246619395368959948618376991191857891919997189827
9252644326896871318783941879993798291951189674981419995699216498289849253481984958375343761948696962
4149366989699391314516198739739998365611211146769689837964632818199827733417982911432639733919961118
3785694943346449113313437192173297234317511989486918779179169811959978466519619814382389974795179229
8173193661981438212589321931819226834981393943686781771986927128994261912991939615971363661699439979
8479197349619477856688178917192741661541913841798699288998264161919784358998345986951361544895722194
9387823917552123692884995799334448659591539912212939191659149351819987712961219375817984328598599894
7812964315918866599999396818117119925739213839329419979879298266584522638128949596632628794899927594
2391843348716127619923835446829918293129713997618113899286695811914941791777191781188282864971628831
9869814173464627244763819721441998547833914115357196275866981483721979728829754991183494575248873899
3759525119799512972171139432761121922192889938411511154289933278983814729624198361288155121749742596
2429134344895591883761666874289213982919652654471211641928968826911633151195891488124183473783171928
8886181492349995235524939198716394499923967835658289266169965949434995834857389557293375945691237192
2153231111419541496813818582276229211229793882886697591279261494221346473438333716131521195987982819
9983399491911518719129352817678695921953245885213828259983567431899628715997395359992977155298181325
3474642518564151369499969799513918368919798899185479829989997639246197855513493872738928431872179498
2732318412186196256356897928718985284818126794829779199946899179899192919186578957838955489991999919
5174898514492714279961793617689337727531149659179437978254251988382912951529715877997391742994559149
6441191197877982527547982766164652298155632979453683329949678198587924143899618194194673133812385279
9721933192312647794494392675978994249714237519435528899779968981967867171823197399159123171497951794
9529734972179199615231232651591988769887899696743322386222999813557814511366456767451396998925196619

248
2021/src/day15.rs Normal file
View File

@ -0,0 +1,248 @@
use std::{
collections::{HashMap, HashSet, VecDeque},
convert::Infallible,
fmt::{Debug, Error, Formatter},
num::ParseIntError,
ops::{Index, IndexMut},
str::FromStr,
};
use anyhow::Result;
use aoc_runner_derive::{aoc, aoc_generator};
use thiserror::Error;
struct Image {
width: usize,
height: usize,
pixels: Vec<usize>,
}
impl Debug for Image {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
writeln!(f)?;
for y in 0..self.height {
for x in 0..self.width {
write!(f, "{}", self[(x, y)])?;
}
writeln!(f)?;
}
Ok(())
}
}
impl Index<(usize, usize)> for Image {
type Output = usize;
fn index(&self, (x, y): (usize, usize)) -> &Self::Output {
&self.pixels[x + y * self.width]
}
}
impl IndexMut<(usize, usize)> for Image {
fn index_mut(&mut self, (x, y): (usize, usize)) -> &mut Self::Output {
&mut self.pixels[x + y * self.width]
}
}
impl FromStr for Image {
type Err = Infallible;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let rows: Vec<_> = s.lines().collect();
let width = rows[0].len();
let height = rows.len();
let pixels = rows
.iter()
.flat_map(|row| row.as_bytes().iter().map(|b| (b - b'0') as usize))
.collect();
Ok(Image {
width,
height,
pixels,
})
}
}
use std::{cmp::Ordering, collections::BinaryHeap};
#[derive(Copy, Clone, Eq, PartialEq)]
struct State {
cost: usize,
position: usize,
}
// The priority queue depends on `Ord`.
// Explicitly implement the trait so the queue becomes a min-heap
// instead of a max-heap.
impl Ord for State {
fn cmp(&self, other: &Self) -> Ordering {
// Notice that the we flip the ordering on costs.
// In case of a tie we compare positions - this step is necessary
// to make implementations of `PartialEq` and `Ord` consistent.
other
.cost
.cmp(&self.cost)
.then_with(|| self.position.cmp(&other.position))
}
}
// `PartialOrd` needs to be implemented as well.
impl PartialOrd for State {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
// Each node is represented as a `usize`, for a shorter implementation.
struct Edge {
node: usize,
cost: usize,
}
impl Debug for Edge {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "Edge{{node: {}, cost: {}}}", self.node, self.cost)?;
Ok(())
}
}
// From https://doc.rust-lang.org/std/collections/binary_heap/index.html
// Dijkstra's shortest path algorithm.
// Start at `start` and use `dist` to track the current shortest distance
// to each node. This implementation isn't memory-efficient as it may leave duplicate
// nodes in the queue. It also uses `usize::MAX` as a sentinel value,
// for a simpler implementation.
fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> {
// dist[node] = current shortest distance from `start` to `node`
let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
let mut heap = BinaryHeap::new();
// We're at `start`, with a zero cost
dist[start] = 0;
heap.push(State {
cost: 0,
position: start,
});
// Examine the frontier with lower cost nodes first (min-heap)
while let Some(State { cost, position }) = heap.pop() {
// Alternatively we could have continued to find all shortest paths
if position == goal {
return Some(cost);
}
// Important as we may have already found a better way
if cost > dist[position] {
continue;
}
// For each node we can reach, see if we can find a way with
// a lower cost going through this node
for edge in &adj_list[position] {
let next = State {
cost: cost + edge.cost,
position: edge.node,
};
// If so, add it to the frontier and continue
if next.cost < dist[next.position] {
heap.push(next);
// Relaxation, we have now found a better way
dist[next.position] = next.cost;
}
}
}
// Goal not reachable
None
}
#[aoc(day15, part1)]
fn part1(input: &str) -> Result<usize> {
let im: Image = input.parse()?;
// TODO build graph by walking pixels, finding neighobrs and using their cost.
// let graph = vec![
// // Node 0
// vec![Edge { node: 2, cost: 10 },
// Edge { node: 1, cost: 1 }],
// // Node 1
// vec![Edge { node: 3, cost: 2 }],
// ...
let idx = |x, y| y * im.width + x;
let mut graph: Vec<_> = Vec::new();
for y in 0..im.height {
for x in 0..im.width {
let mut edges = Vec::new();
if x > 0 {
edges.push(Edge {
node: idx(x - 1, y),
cost: im[(x - 1, y)],
});
}
if x < im.width - 1 {
edges.push(Edge {
node: idx(x + 1, y),
cost: im[(x + 1, y)],
});
}
if y > 0 {
edges.push(Edge {
node: idx(x, y - 1),
cost: im[(x, y - 1)],
});
}
if y < im.height - 1 {
edges.push(Edge {
node: idx(x, y + 1),
cost: im[(x, y + 1)],
});
}
graph.push(edges);
}
}
Ok(shortest_path(&graph, 0, im.pixels.len() - 1).unwrap())
}
/*
#[aoc(day15, part2)]
fn part2(input: &str) -> Result<usize> {
todo!("part2");
Ok(0)
}
*/
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_part1() -> Result<()> {
let input = r#"
1163751742
1381373672
2136511328
3694931569
7463417111
1319128137
1359912421
3125421639
1293138521
2311944581
"#
.trim();
assert_eq!(part1(input)?, 40);
Ok(())
}
/*
#[test]
fn test_part2()->Result<()> {
let input = r#"
"#
.trim();
assert_eq!(part2(input)?, usize::MAX);
Ok(())
}
*/
}

View File

@ -4,6 +4,7 @@ pub mod day11;
pub mod day12;
pub mod day13;
pub mod day14;
pub mod day15;
pub mod day2;
pub mod day3;
pub mod day4;